Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The study presents the summary of the knowledge of energy-active segments of steel buildings adapted to obtain electrical energy (EE) and thermal energy (TE) from solar radiation, and to transport and store TE. The study shows a general concept of the design of energy-active segments, which are separated from conventional segments in the way that allows the equipment installation and replacement. Exemplary solutions for the design of energy-active segments, optimised with respect to the principle of minimum thermal strain and maximum structural capacity and reliability were given [34]. The following options of the building covers were considered: 1) regular structure, 2) reduced structure, 3) basket structure, 4) structure with a tie, high-pitched to allow snow sliding down the roof to enhance TE and EE obtainment. The essential task described in the study is the optimal adaptation of energy-active segments in large-volume buildings for extraction, transportation and storage of energy from solar radiation.
Go to article

Abstract

To figure out the reason causing ladle nozzle clogging during CC (continuous casting) of a non-oriented electrical steel with high silicon (or HNO for short) and get a method to address it, this paper studied the theoretical calculation of flow rates during CC, the inclusions around the slide gate where ladle nozzle clogging happened, and Ca-treatment at the end of RH for decreasing ladle clogging of the electrical steel both theoretically and practically. The results showed that: The bigger diameter of a nozzle or less nozzle clogging can guarantee an enough flow rate for reaching the target casting speed. Ladle nozzle clogging can be predicted by comparing the percentage of slide gate opening. Al2O3 and its composite inclusions were the main reason that caused the ladle nozzle clogging of the electrical steel. Higher [Al] or TO will increase the amount of Pure Ca wires for Ca-treatment. The results of the verification tests fit the thermodynamic calculation, and Ca-treatment using pure Ca wires could prevent ladle nozzles from clogging without affecting the magnetic properties of the electrical steel.
Go to article

Abstract

The Goss texture is a characteristic feature of grain-oriented transformer steel sheets. Generator sheets, which are produced as non-oriented steel sheets, should have isotropic features. However, measurement results of generator sheets, confirmed by crystallographic studies, indicate that these sheets are characterized by certain, quite significant anisotropy. The first purpose of this paper is to present the influence of textures of generator and transformer steel sheets on their magnetization characteristics. The second aim is to propose a method which takes into account the sheet textures in the calculations of magnetization curves. In calculations of magnetization processes in electrical steel sheets, models in which the plane of a sheet sample is divided into an assumed number of specified directions are used. To each direction a certain hysteresis loop, the so-called direction hysteresis, is assigned. The parameters of these direction hystereses depend, among other things, on the texture type in these steel sheets. This paper discusses the method which calculates the parameters of these direction hystereses taking into account the given sheet texture. The proposed method gives a possibility of determining the magnetization characteristics for any direction of the field intensity changes.
Go to article

This page uses 'cookies'. Learn more