Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper proposes a methodology useful in verification of results of dilatometric tests aimed at determination of temperatures defining the start and the end of eutectoid transformation in the course of ductile cast iron cooling, based on quenching techniques and metallographic examination. For an industrial melt of ductile cast iron, the effect of the rate of cooling after austenitization at temperature 900°C carried out for 30 minutes on temperatures TAr1 start and TAr1 end was determined. The heating rates applied in the study were the same as the cooling rates and equaled 30, 60, 90, 150, and 300°C/h. It has been found that with increasing cooling rate, values of temperatures TAr1 start and TAr1 end decrease by several dozen degrees.
Go to article

Abstract

This work presents the qualitative and quantitative changes in the products of isothermal transformation (reaction) in a ductile cast iron austenite after supercooling to the temperature range Ar1. The austenitizing temperature considered in this work was 900, 960 or 1020°C. The eutectoid reaction was investigated by metallographic examination at a holding temperature right below Ar11 (820°C) or right below Ar12 (760°C). The quantitative metallographic examination was carried out with a light microscope (LM). The initial transformation stage products were identified with a transmission electron microscope (TEM). The selected samples were studied for chemical microsegregation of manganese, silicon, phosphorus, and carbon with an X-ray microanalyser (MAR). The tested cast iron material was found to predominantly feature a eutectoid reaction in the metastable system the ratio of which was increasing with the austenitizing temperature. The austenitizing temperature was found to be conducive to the evolution kinetics of individual phases and to the graphitization kinetics of the eutectoid cementite that was formed during the contemplated reaction.
Go to article

This page uses 'cookies'. Learn more