Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The article contains basic information associated with the impact of the FSW process parameters on the forming of a weld while friction welding of aluminium casting alloys. Research was conducted using specially made samples containing a rod of casting alloy mounted in the wrought alloy in the selected area of FSW tool acting. Research has thrown light on the process of joining materials of significantly dissimilar physical properties, such as casting alloys and wrought alloys. Metallographic testing of a weld area has revealed the big impact of welding conditions, especially tool rotational speed, on the degree of metal stirring, grain refinement and shape factor of a weld. As the result of research it has been stated that at the high tool rotational speed, the metals stirring in a weld is significantly greater than in case of welding at low rotational speeds, however this fails to influence the strength of a weld. Plastic strain occurring while welding causes very high refinement of particles in the tested area and changing of their shape towards particles being more equiaxial. In the properly selected welding conditions it is possible to obtain joints of correct and repeatable structure, however in the case of the accumulation of cavities in the casting alloy the FSW process not always eliminates them.
Go to article

Abstract

Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/ min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Go to article

This page uses 'cookies'. Learn more