Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

A microstructural model of Red Blood Cell (RBC) behaviour was proposed. The erythrocyte is treated as a viscoelastic object, which is denoted by a network of virtual particles connected by elastic springs and dampers (Kelvin-Voigt model). The RBC is submerged in plasma modelled by lattice Boltzmann fluid. Fluid – structure interactions are taken into account. The simulations of RBC behaviour during flow in a microchannel and wall impact were performed. The results of RBC deformation during the flow are in good agreement with experimental data. The calculations of erythrocyte disaggregation from the capillary surface show the impact of RBC structure stiffness on the process.
Go to article

Abstract

The purpose of this paper is to study the thermoviscoelastic interactions in a homogeneous, isotropic semi-infinite solid under two-temperature theory with heat source. The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of the material is used. The bounding plane surface of the medium is subjected to a non-Gaussian laser pulse. The generalized thermoelasticity theory with dual phase lags model is used to solve this problem. Laplace transform technique is used to obtain the general solution for a suitable set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the phase lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields. A comparison was also made with the results obtained in the case of one temperature thermoelasticity theory.
Go to article

This page uses 'cookies'. Learn more