Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

For the purpose of making of a solid body of an electric guitar the acoustic- and mechanical properties of walnut- (Juglans regia L.) and ash wood (Fraxinus excelsior L.) were researched. The acoustic properties were determined in a flexural vibration response of laboratory conditioned wood elements of 430 × 186 × 42.8 mm used for making of a solid body of an electric guitar. The velocity of shearand compression ultrasonic waves was additionally determined in parallel small oriented samples of 80 × 40 × 40 mm. The research confirmed better mechanical properties of ash wood, that is, the larger modulus of elasticity and shear modules in all anatomical directions and planes. The acoustic quality of ash wood was better only in the basic vibration mode. Walnut was, on the other hand, lighter and more homogenous and had lower acoustic- and mechanical anisotropy. Additionally, reduced damping of walnut at higher vibration modes is assumed to have a positive impact on the vibration response of future modelled and built solid bodies of electric guitars. When choosing walnut wood, better energy transfer is expected at a similar string playing frequency and a structure resonance of the electric guitar.
Go to article

Abstract

Investigation of the tensile and fatigue properties of cast magnesium alloys, created by the heated mold continuous casting process (HMC), was conducted. The mechanical properties of the Mg-HMC alloys were overall higher than those for the Mg alloys, made by the conventional gravity casting process (GC), and especially excellent mechanical properties were obtained for the Mg97Y2Zn1 -HMC alloy. This was because of the fine-grained structure composed of the -Mg phases with the interdendritic LPSO phase. Such mechanical properties were similar levels to those for conventional cast aluminum alloy (Al84.7Si10.5Cu2.5Fe1.3Zn1 alloys: ADC12), made by the GC process. Moreover, the tensile properties (UTS and f ) and fatigue properties of the Mg97Y2Zn1 -HMC alloy were about 1.5 times higher than that for the commercial Mg90Al9Zn1 -GC alloy (AZ91). The high correlation rate between tensile properties and fatigue strength (endurance limit: l ) was obtained. With newly proposed etching technique, the residual stress in the Mg97Y2Zn1 alloy could be revealed, and it appeared that the high internal stress was severely accumulated in and around the long-period stacking-order phases (LPSO). This was made during the solidification process due to the different shrinkage rate between α-Mg and LPSO. In this etching technique, microcracks were observed on the sample surface, and amount of micro-cracks (density) could be a parameter to determine the severity of the internal stress, i.e., a large amount to micro-cracks is caused by the high internal stress.
Go to article

Abstract

The effect of CaSiAl modification (43-49% Ca, 43-48% Si, 2% Al) on the non-metallic inclusions and mechanical properties of cast lowcarbon steel is discussed. Tests were carried out on the cast steel with 0.2% C and micro-additives of V and Nb, used mainly for heavy steel castings (e.g. slag ladles). The modifier in an amount of 1.5 and 3 kg / Mg was introduced to the liquid steel before tapping the metal into a ladle. Test ingots of Y type and a weight of 10 kg were cast and then subjected to a normalizing heat treatment. Using light microscopy and scanning electron microscopy, qualitative and quantitative evaluation of the non-metallic inclusions present in as-cast samples was carried out. Additionally, tests of mechanical strength and impact strength were performed on cast steel with and without the different content of modifier. It was found that increasing the modifier addition affected impact strength but had no significant effect on tensile strength and yield strength. The material with high impact strength had the smallest area fraction of non-metallic inclusions in the microstructure (0.20%). The introduction of modifiers changed the morphology of non-metallic inclusions from dendritic to regular and nodular shapes.
Go to article

This page uses 'cookies'. Learn more