Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Casting quality depends on many factors including the quality of the input materials, technology, material securing and last but not least, the mould into which the casting is casted. By pouring into a single-shot mould, based mainly on 1st generation binders, is is a very important factor. Basically, a bentonite mixture represents either a three- or four-component system, but each component of the system is a heterogeneous substance. This heterogeneity punctuates mainly a non-stationary heat field, presented throughout the whole process of the casting production. The most important component is a binder and in the case of first generation binders mostly bentonites are used - clays that contain minimum of 80% of montmorillonite
Go to article

Abstract

The criteria, with which one should be guided at the assessment of the binding properties of bentonites used for moulding sands, are proposed in the paper. Apart from the standard parameter which is the active bentonite content, the unrestrained growth indicator should be taken into account since it seems to be more adequate in the estimation of the sand compression strength. The investigations performed for three kinds of bentonites, applied in the Polish foundry plants, subjected to a high temperature influences indicate, that the pathway of changes of the unrestrained growth indicator is very similar to the pathway of changes of the sand compression strength. Instead, the character of changes of the montmorillonite content in the sand in dependence of the temperature is quite different. The sand exhibits the significant active bentonite content, and the sand compression strength decreases rapidly. The montmorillonite content in bentonite samples was determined by the modern copper complex method of triethylenetetraamine (Cu(II)-TET). Tests were performed for bentonites and for sands with those bentonites subjected to high temperatures influences in a range: 100-700ºC.
Go to article

Abstract

A determination of the heating degree of the moulding sand with bentonite on the grounds of simulating investigations with the application of the MAGMA program, constitutes the contents of the paper. To this end the numerical simulation of the temperature distribution in the virtual casting mould was performed. It was assumed that the mould cavity was filled with a moulding sand with bentonite of a moisture content 3,2 % and bentonite content 8 %. A computer simulation can be used for predicting the heating degree of moulding sands with bentonite. Thus, prediction of the active bentonite (montmorillonite) content in individual layers of the overheated moulding sand can be done by means of the simulation. An overheating degree of a moulding sand with bentonite, and thus the bentonite deactivation depends on a temperature of a casting alloy, casting mass, ratio of: masssand : masscasting, moulding sand amount in the mould and contact area: metal – mould (geometry of the casting shape). Generally it can be stated, that the bentonite deactivation degree depends on two main factors: temperature of moulding sand heating and time of its operation.
Go to article

This page uses 'cookies'. Learn more