Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.
Go to article

Abstract

The new investigation method of the kinetics of the gas emission from moulding sands used for moulds and cores is presented in this paper. The gas evolution rate is presented not only as a function of heating time but also as a function of instantaneous temperatures. In relation to the time and heating temperature the oxygen and hydrogen contents in evolving gases was also measured. This method was developed in the Laboratory of Foundry Moulds Technology, Faculty of Foundry Engineering, AGH. Gas amounts which are emitted from the moulding sand at the given temperature recalculated to the time unit (kinetics) are obtained in investigations. Results of investigations of moulding sand with furan resin are presented - as an example - in the paper.
Go to article

This page uses 'cookies'. Learn more