Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:

Abstract

Postoperative adhesion (POA) is a common and well-known complication with an estimated risk of 50-100%. The antioxidant effect of n-acetyl-cysteine (NAC) can increase intracellular glutathione levels, thereby reducing adhesion. This study was conducted to compare the outcomes of NAC nanoparticles (Nano-NAC) on intra-abdominal adhesion (IAA) after laparotomy in rat. A total of 25 male Wistar rats were randomized into five groups: 50 mg/kg Nano-NAC, 75 mg/kg Nano-NAC, 150 mg/kg Nano-NAC, NAC and control. During the surgical procedure, some sections (2×2cm) were collected through abdominal midline incision to ensure the infliction of peritoneal damage by a standard adhesion. Macroscopic evaluation was performed on the 14th and 28th day and blood samples were collected to evaluate the inflammatory factor (C-reactive protein) on days 0, 14 and 28. According to the serologic results (CRP test), C-reactive protein was at highest level in 150 mg/kg Nano-NAC and control groups and at lowest level in 50 mg/kg Nano-NAC and 75 mg/kg Nano-NAC groups (p<0.001). The macroscopic evaluation results showed that frequency of adhesion bands was significantly lower in 50 mg/kg Nano-NAC group than the control at the intervals. Results showed that the intraperitoneal administration of lower Nano-NAC dosages (50 and 75 mg/kg) had a major role in the management of postoperative inflammation. Nano-NAC administration was proved feasible, safe and effective in reduction of the C-reactive protein level.
Go to article

Abstract

This work presents a theoretical study for the distribution of nanocomposite structure of plasmonic thin-film solar cells through the absorber layers. It can be reduced the material consumption and the cost of solar cell. Adding nanometallic fillers in the absorber layer has been improved optical, electrical characteristics and efficiency of traditional thin film solar cells (ITO /CdS/PbS/Al and SnO2/CdS/CdTe/Cu) models that using sub micro absorber layer. Also, this paper explains analysis of J-V, P-V and external quantum efficiency characteristics for nanocomposites thin film solar cell performance. Also, this paper presents the effect of increasing the concentration of nanofillers on the absorption, energy band gap and electron-hole generation rate of absorber layers and the effect of volume fraction on the energy conversion efficiency, fill factor, space charge region of the nanocomposites solar cells.
Go to article

Abstract

The ceaseless progress of nanotechnology, observed in the last years, causes that nanomaterials are more and more often applied in several fields of industry, technique and medicine. E.g. silver nanoparticles are used in biomedicine for disinfection and polymer nanoparticles allow insulin transportation in pharmacology. New generation materials containing nanoparticles are also used in the chemical industry (their participation in the commercial market equals app. 53 %). Nanomaterials are used in electronics, among others for semiconductors production (e.g. for producing nanoink Ag, which conducts electric current). Nanomaterials, due to their special properties, are also used in the foundry industry in metallurgy (e.g. metal alloys with nanocrystalline precipitates), as well as in investment casting and in moulding and core sand technologies. Nanoparticles and containing them composites are applied in several technologies including foundry practice, automotive industry, medicine, dentistry etc. it is expected that their role and market share will be successively growing.
Go to article

Abstract

Ultrasonic processing in the cavitation mode is used to produce the composite materials based on the metal matrix and reinforcing particles of micro- and nano-sizes. In such a case, the deagglomeration of aggregates and the uniform distribution of particles are the expected effects. Although the particles can not only fragment in the acoustic field, they also can coagulate, coarsen and precipitate. In this paper, a theoretical study of processes of deagglomeration and coagulation of particles in the liquid metal under ultrasonic treatment is made. The influence of various parameters of ultrasound and dispersion medium on the dynamics of particles in the acoustic field is considered on the basis of the proposed mathematical model. The criterion of leading process (coagulation or deagglomeration) has been proposed. The calculated results are compared with the experimental ones known from the scientific literature.
Go to article

Abstract

The temperature dependence of the particle size distribution (PSD) of the magnetic fluid with an additional biocompatible dextran layer was studied using a ultrasonic method. The measurements of the ultrasound velocity and attenuation were carried out as a function of the volume concentration of magnetite particles at temperatures ranging from 15°C to 40°C. In order to extract the PSD from ultrasonic measurements, the theoretical model of Vinogradov-Isakovich was used. The extraction of PSD from the ultrasonic data requires also the measurements the density and viscosity of the ferrofluid samples. The calculated PSD of the magnetic fluid with an additional biocompatible layer shows a greater thermal stability than that of a magnetic fluid with a single surfactant layer.
Go to article

Abstract

Stability of silver nanoparticles strongly influences the potential of their application. The literature shows wide possibilities of nanoparticles preparation, which has significantly impact on their properties. Therefore, the improvement of AgNPs preparation plays a key role in the case of their practical use. The pH values of the environment are one of the important factors, which directly influences stability of AgNPs. We present a comparing study of the silver nanoparticles prepared by „bottom-up“ methods over by chemical synthesis and biosynthesis using AgNO3 (0.29 mM) solution. For the biosynthesis of the silver nanoparticles, the green freshwater algae Parachlorella kessleri and Citrus limon extracts were used as reducing and stabilizing agents. Chemically synthesized AgNPs were performed using sodium citrate (0.5%) as a capping agent and 0.01% gelatine as a reducing agent. The formation and long term stability of those silver nanoparticles synthesized either biologically and chemically were clearly observed by solution colour changes and confirmed by UV-vis spectroscopy. The pH values of formed nanoparticle solutions were 3 and 5.8 for biosynthesized AgNPs using extract of Citrus limon and Parachlorella kessleri, respectively and 7.2 for chemically prepared AgNPs solution using citrate. The SEM as a surface imaging method was used for the characterization of nanoparticle shapes, size distribution and also for resolving different particle sizes. These micrographs confirmed the presence of dispersed and aggregated AgNPs with various shapes and sizes.
Go to article

Abstract

Three plants extracts were used for biosynthesis of Ag nanoparticles (AgNPs). AgNPs nucleation process requires effective reduction agents which secure Ag+ to Ag0 reduction and also stabilizing/capping agents. The UV-vis and TEM observation revealed that the best results were obtained by R. officinalis leaf extract. The strong SPR band peak appeared at the wavelength 418 nm. Synthetized AgNPs were globular, fine (~20 nm), uniform and stabile throughout the experiment. A rapid rate of AgNPs synthesis was also significant and economically advantageous factor. Fine (10-20 nm) and globular nanoparticles were synthetized also by U. dioica leaf extract, but the stability of nanoparticles was not permanent. Despite V. vitis-idaea fruit extract contains a lot of reducing agents, UV-vis did not confirm the presence of AgNPs in solution. Synthetized Ag particles were very unstable, Ag particles agglomerated very fast and clearly indicated sediment was formed.
Go to article

Abstract

The nanocomposites based on water glass matrix were attempted in the study. Nanoparticles of ZnO, Al2O3 or MgO in organic solutions were applied into water glass matrix in the amounts of: 1.5; 3; 4 or 5 mas. %. Wettability of the quartz sad by the nanocomposites based on water glass matrix was determined by testing changes of the wetting angle θ in time τ for the system: quartz – binder in non-stationary state, by means of the device for measuring wetting angles. Wettability measurements were carried out under isothermal conditions at an ambient temperature (20 – 25 oC). The modification improves wettability of quartz matrix by water glass, which is effective in improving strength properties of hardened moulding sands. Out of the considered modifiers in colloidal solution of propyl alcohol water glass modified by MgO nanoparticles indicated the smallest values of the equilibrium wetting angle θr. This value was equal app. 11 degrees and was smaller no less than 40 degrees than θr value determined for not modified water glass. Viscosity η of nanocomposites based on water glass matrix was determined from the flow curve, it means from the empirically determined dependence of the shearing stress τ on shear rate γ: τ = f (γ) (1), by means of the rotational rheometer. Measurements were carried out at a constant temperature of 20 oC. The modification influences the binder viscosity. This influence is conditioned by: amount of the introduced modifier as well as dimensions and kinds of nanoparticles and organic solvents. The viscosity increase of the modified binder does not negatively influence its functional properties.
Go to article

Abstract

Abstract An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of the FT-IR absorption spectra.
Go to article

Abstract

Because of excellent properties, similar to natural bone minerals, and variety of possible biomedical applications, hydroxyapatite (HAp) is a valuable compound among the calcium phosphate salts. A number of synthesis routes for producing HAp powders have been reported. Despite this fact, it is important to develop new methods providing precise control over the reaction and having potential to scale-up. The main motivation for the current paper is a view of continuous synthesis methods toward medical application of produced hydroxyapatite, especially in the form of nanoparticles.
Go to article

Abstract

Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.
Go to article

Abstract

Nanodiagonastic methods in plant pathology are used for enhancing detection and identification of different plant pathogens and toxigenic fungi. Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by using some nanoparticles is emerging as a new area of research. In the current research, silver, zinc, and gold nanoparticles were used to increase the yield of DNA for two plant pathogenic fungi including soil-borne fungus Rhizoctonia solani and toxigenic fungus Alternaria alternata. Gold nanoparticles combined with zinc and silver nanoparticles enhanced both DNA yield and PCR products compared to DNA extraction methods with ALB buffer, sodium dodecyl sulfate, ALBfree from protinase K, ZnNPs and AgNPs. Also, by using ZnNPs and AgNPs the DNA yield was enhanced and the sensitivity of random amplified polymorphic DNA (RAPD) PCR products was increased. Application of nanomaterials in the PCR reaction could increase or decrease the PCR product according to the type of applied nanometal and the type of DNA template. Additions of AuNPs to PCR mix increased both sensitivity and specificity for PCR products of the tested fungi. Thus, the use of these highly stable, commercially available and inexpensive inorganic nano reagents open new opportunities for improving the specificity and sensitivity of PCR amplicon, which is the most important standard method in molecular plant pathology and mycotoxicology.
Go to article

Abstract

Measurements of dynamic surface tension were carried out in aqueous systems (water or 0.1 mM Triton X-100) comprising nanoparticles formed from chemically modified polyaldehyde dextran (PAD). The nanostructures, considered as potential drug carriers in aerosol therapy, were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in an aqueous solution. The dynamic surface tension of the samples was determined by the maximum bubble pressure (MBP) method and by the axisymmetric drop shape analysis (ADSA). Experiments with harmonic area perturbations were also carried out in order to determine surface dilatational viscoelasticity. PAD showed a remarkable surface activity. Ward-Tordai equation was used to determine the equilibrium surface tension and diffusion coefficient of PAD nanoparticles (D = 2.3×10-6 m2/s). In a mixture with Triton X-100, PAD particles showed co-adsorption and synergic effect in surface tension reduction at short times (below 10 s). Tested nanoparticles had impact on surface rheology in a mixed system with nonionic surfactant, suggesting their possible interactions with the lung surfactant system after inhalation. This preliminary investigation sets the methodological approach for further research related to the influence of inhaled PAD nanoparticles on the lung surfactant and mass transfer processes in the respiratory system.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

Experimental investigation was conducted on the thermal performance and pressure drop of a convective cooling loop working with ZnO aqueous nanofluids. The loop was used to cool a flat heater connected to an AC autotransformer. Influence of different operating parameters, such as fluid flow rate and mass concentration of nanofluid on surface temperature of heater, pressure drop, friction factor and overall heat transfer coefficient was investigated and briefly discussed. Results of this study showed that, despite a penalty for pressure drop, ZnO/water nanofluid was a promising coolant for cooling the micro-electronic devices and chipsets. It was also found that there is an optimum for concentration of nanofluid so that the heat transfer coefficient is maximum, which was wt. %=0.3 for ZnO/water used in this research. In addition, presence of nanoparticles enhanced the friction factor and pressure drop as well; however, it is not very significant in comparison with those of registered for the base fluid.
Go to article

Abstract

Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI), Pb(II), Cr(III), Cu(II), Zn(II), Ni(II) and Cd(II). The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD), the nanosized crystallites in the sample were agglomerated (SEM) and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET). The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.
Go to article

Abstract

Nanoparticles are very fascinating area of science not only due to their unique properties but also possibility of producing new more complex materials, which may find an application in modern chemistry, engineering and medicine. In process of nanoparticles formation very important aspect is a rate of individual stage i.e. reduction, nucleation and autocatalytic growth, because this knowledge allows for proper materials design, morphology manipulation, stability. The last one aspect can be realized using proper electrostatic, steric and electrosteric stabilization. However until now nobody reports and measures kinetic rates of all stages during process of particles formation in the presence of steric stabilizers. Thus, the main contribution of this paper is determination of individual rate constants for nanoparticles formation in the presence of steric stabilizers and their comparison to the system without stabilizer. For this purpose, an aqueous solution of Au(III) and Pt(IV) ions were mixed with steric stabilizers like PVA and PVP, and reduced using L-ascorbic acid as a mild and sodium borohydride as a strong reductant. As a results stable nanoparticles were formed and process of their formation was registered spectrophotometrically. From obtained kinetic curves the values of observed rate constants for reduction metal ions, slow nucleation and fast autocatalytic growth were determined using Watzky-Finke model. It was found that the addition of polymer affects the rate of the individual stages. The addition of steric stabilizers to gold ions reduced with L-ascorbic acid causes that the process of nucleation and autocatalytic growth slows down and the value of observed rate constants for nucleation changes from 3.79·10–3 (without polymer) to 7.15·10–5s–1 (with PVA) and for growth changes from 1.15·103 (without polymer) to 0.48·102s–1M–1 (with PVA). However, the rate of the reduction reaction of Au(III) ions is practically unchanged. In case of using strong reductant the addition of polymer effects on the shape of kinetic curve for reduction of Au(III) and it suggests that mechanism is changed. In case of Pt(IV) ions reduction with L-ascorbic acid, the process speeds up a little when PVA was added. Determined values of observed rate constants for nucleation and growth platinum nanoparticles decrease twice comparing to the system without polymer. The reduction of Pt(IV) ions with sodium borohydride accelerates when PVP was added and slows down when PVA was used. Moreover, the size of obtained colloidal gold and platinum was also analysed using DLS method. Obtained results (rate constants) may be useful in the process of nanomaterials synthesis, in particular in microflow.
Go to article

Abstract

In August 2016, tomato plants grown during a hot, wet summer with heavy soil flooding, displaying symptoms of wilting, dead plant, root rot with crown and stem rot, at Beni Suef and Fayoum governorates were examined. A number of 16 fungal isolates were isolated from tomato plants displaying the above symptoms. These isolates were classified as belonging to six species, namely: Alternaria solani, Chaetomium globosum, Fusarium solani, Fusarium oxysporum, Pythium spp. and Rhizoctonia solani. Isolates of Pythium spp. were prevalent and were found to be more pathogenic than the other fungal isolates. This species causes damping-off, root rot, sudden death, stem rot and fruit rot. The pathogen was identified as Pythium aphanidermatum based on morphological, cultural, and molecular characteristics. Biogenic silver nanoparticles (AgNPs) were produced using the F. oxysporum strain and characterized by transmission electron microscopy (TEM). The size of these spherical particles ranged from 10 to 30 nm. In vitro, biogenic AgNPs showed antifungal activity against P. aphanidermatum. In greenhouse and field experiments, AgNPs treatment significantly reduced the incidence of dead tomato plants due to root rot caused by P. aphanidermatum compared to the control. All of the investigated treatments were effective and the treatment of root dipping plus soil drenching was the most effective. To the best of our knowledge, this study describes P. aphanidermatum on tomato in Egypt for the first time. Also, biogenic AgNPs could be used for controlling root rot disease caused by this pathogen.
Go to article

Abstract

Silver nanoparticles (AgNPs) are widely used in numerous industries and areas of daily life, mainly as antimicrobial agents. The particles size is very important, but still not suffi ciently recognized parameter infl uencing the toxicity of nanosilver. The aim of this study was to investigate the cytotoxic effects of AgNPs with different particle size (~ 10, 40 and 100 nm). The study was conducted on both reproductive and pulmonary cells (CHO-9, 15P-1 and RAW264.7). We tested the effects of AgNPs on cell viability, cell membrane integrity, mitochondrial metabolic activity, lipid peroxidation, total oxidative and antioxidative status of cells and oxidative DNA damage. All kinds of AgNPs showed strong cytotoxic activity at low concentrations (2÷13 μg/ml), and caused an overproduction of reactive oxygen species (ROS) at concentrations lower than cytotoxic ones. The ROS being formed in the cells induced oxidative damage of DNA in alkaline comet assay. The most toxic was AgNPs<10 nm. The results indicate that the silver nanoparticles, especially less than 10 nm, may be harmful to the organisms. Therefore, risk should be considered when using nanosilver preparations and provide appropriate protective measures when they are applied.
Go to article

Abstract

A review is given on a number of colloidal phenomena with special reference to their applicability to nanoparticles. Phenomena addressed include preparation, electric double layers and their characterization, electrokinetics, van der Waals and Lifshits forces, electric and steric particle interaction.
Go to article

Abstract

The paper deals with spectral and lasing characteristics of thulium-doped optical fibers fabricated by means of two doping techniques, i.e. via a conventional solution-doping method and via a nanoparticle-doping method. The difference in fabrication was the application of a suspension of aluminum oxide nanoparticles of defined size instead of a conventional chloride-containing solution. Samples of thulium-doped silica fibers having nearly identical chemical composition and waveguiding properties were fabricated. The sample fabricated by means of the nanoparticle-doping method exhibited longer lifetime, reflecting other observations and the trend already observed with the fibers doped with erbium and aluminum nanoparticles. The fiber fabricated by means of the nanoparticle-doping method exhibited a lower lasing threshold (by ~20%) and higher slope efficiency (by ~5% rel.). All these observed differences are not extensive and deserve more in-depth research; they may imply a positive influence of the nanoparticle approach on properties of rare-earth-doped fibers for fiber lasers.
Go to article

Abstract

The aim of the present study was to develop a modifier for water glass. The method of thermal generation of metal oxide nanoparticles was adapted and used in the research. Nanoparticles of ZnO from the thermal decomposition of basic zinc carbonate were used. A method for the modifier introduction was developed, and the effect of modifier content and organic solvent type on the physico-chemical properties of binder (viscosity) and quartz wettability was determined. Binder viscosity was examined from the flow curves plotted with the help of a RHEOTEST 2 rotational rheometer equipped with proper software. Quartz wettability was determined examining timerelated changes in the value of the contact angle in a quartz-binder system, until full stabilisation of the angle value has been achieved. Binder modification was carried out on sodium water glass designated as R"145". The water glass modifiers were suspensions of ZnO nanoparticles in propanol and methanol at a fixed concentration of c = 0.3 M and with the size of nanoparticles comprised in a range of <61 - 981 nm>. Water glass modification with the suspensions of ZnO nanoparticles in methanol and propanol showed the effect of modifier on the water glass viscosity and quartz wettability. This effect depends on the type of alcohol used. The ZnO suspension in propanol (alcohol with a longer hydrocarbon chain) affects more strongly the viscosity of binder and quartz wettability than the methanol suspension.
Go to article

Abstract

The purpose of the presented experiment was to develop an effective water glass modifier. In the conducted research, an attempt was made to determine the effect of modifier addition on the wettability of quartz grains, viscosity and cohesion of binder and strength Rm U of the sand mixture. Water glass modification was carried out with, obtained in electrochemical process [1], colloidal suspension of ZnO nanoparticles in methanol (modifier I) or propanol (modifier II), characterised by a constant molar concentration of c = 0.3 M. It was demonstrated that the addition of a colloidal suspension of ZnO nanoparticles in propanol (modifier II) had a significant effect on wettability of quartz grains improvement without the accompanying increase in binder viscosity. Testing the mechanical properties Rm U of sand mixtures containing modified binder (modifier II) hardened at ambient conditions showed an approximately 28% increase in strength compared with the Rm U of the sand bonded with an unmodified binder.
Go to article

Abstract

In this work, a design equation was presented for a batch-recirculated photoreactor composed of a packed bed reactor (PBR) with immobilised TiO2-P25 nanoparticle thin films on glass beads, and a continuous-flow stirred tank (CFST). The photoreactor was studied in order to remove C.I. Acid Orange 7 (AO7), a monoazo anionic dye from textile industry, by means of UV/TiO2 process. The effect of different operational parameters such as the initial concentration of contaminant, the volume of solution in CFST, the volumetric flow rate of liquid, and the power of light source in the removal efficiency were examined. A rate equation for the removal of AO7 is obtained by mathematical kinetic modelling. The results of reaction kinetic analysis indicate the conformity of removal kinetics with Langmuir-Hinshelwood model (kL-H = 0.74 mg L-1 min-1, Kads = 0.081 mg-1 L). The represented design equation obtained from mathematical kinetic modelling can properly predict the removal rate constant of the contaminant under different operational conditions (R2 = 0.963). Thus the calculated and experimental results are in good agreement with each other.
Go to article

This page uses 'cookies'. Learn more