Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In the paper presented are definitions of specific indicators of power which characterize the operation of the organic Rankine cycle (ORC) plant. These quantities have been presented as function of evaporation temperature for selected working fluids of ORC installation. In the paper presented also is the procedure for selection of working fluid with the view of obtaining maximum power. In the procedure of selection of working fluid the mentioned above indicators are of primary importance. In order to obtain maximum power there ought to be selected such working fluids which evaporate close to critical conditions. The value of this indicator increases when evaporation enthalpy decreases and it is known that the latent heat of evaporation decreases with temperature and reaches a value of zero at the critical point.
Go to article

Abstract

The paper presents an efficiency analysis of two transcritical CO2 power cycles with regenerative heaters. For the proposed cycles, calculations of thermal efficiency are given for selected values of operating parameters. It was assumed that the highest working temperature and pressure are in the range from 600 to 700 °C and 40 to 50 MPa, respectively. The purpose of the calculations was optimization of the pressure and mass flows in the regenerative heaters to achieve maximum cycle efficiency. It follows that for the assumed upper CO2 parameters, efficiency of 51-54% can be reached, which is comparable to the efficiency of a supercritical advanced power cycle considered by Dostal.
Go to article

Abstract

In the paper, a method for determination of the near-critical region boundary is proposed. The boundary is evaluated with respect to variations of specific heat capacity along isobars. It is assumed that the value of specific heat capacity inside the near-critical region exceeds by more than 50% the practically constant value typical for fluids under normal conditions. It appears that large variations of heat capacity are also present for high-pressure subcritical states sufficiently close to the critical point. Therefore, such defined near-critical region is located not only in supercritical fluid domain but also extends into subcritical fluid. As an example, the boundaries of the near-critical region were evaluated for water, carbon dioxide and R143a.
Go to article

This page uses 'cookies'. Learn more