Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Repeated austenitisation and furnace cooling of homogenised 0.16 wt. % carbon steels result in ferrite grain sizes between 27 μm and 24 μm. Similarly, repeated austenitisation and normal-air cooling produces ferrite grain sizes between 17 μm and 12 μm; while repeated austenitisation and forced-air cooling produces a minimum grain size of 9.5 μm. Furnace cooling decomposes the austenite eutectoidally to lamellar pearlite; while normal-air cooling and forced-air cooling after austenitisation cause degeneration of pearlite regions producing grain boundary network as well as cluster of cementite and other carbides. Forced-air cooled samples provide the highest YS (364 MPa) and UTS (520 MPa); while furnace cooling provides the lowest (290 MPa and 464 MPa) leaving the normal-air cool performance in between. Hardness values depict the role of individual ferrite and pearlite content and the extent of pearlite degeneration occurring after each cyclic treatment.
Go to article

Abstract

In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast proces so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer). The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer) is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.
Go to article

Abstract

In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer). The bearing part of bimetallic layered casting is typical foundry material i.e. unalloyed cast steel, whereas working part is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.
Go to article

This page uses 'cookies'. Learn more