Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

Height, frequency and spatial differentiation of atmospheric precipitation of the summer season for the period 1975-1982 are presented. Results of the respective investigations are compared with atmospheric precipitation in other areas of the western coast of Spitsbergen.
Go to article

Abstract

Trial series of cast alloy MO59 obtained from qualified scrap was investigated. SEM and TEM of resulting precipitates were conducted. The SEM analysis demonstrated the dependence of silicon, phosphorus, iron, chromium and nickel in the composition of the so-called hard precipitates. TEM analysis showed the formation of phase AlFeSi and AlCr. Made studies have shown the important role of the composition of the batch melts brass CuZn39Pb2 type. The analysis of SEM and TEM resulting precipitates pointed to the formation of various forms of divisions, only one of which was described in the literature character of the so-called hard inclusions. The SEM studies demonstrated the dependence of the occurrence of inclusions rich in silicon, phosphorus, iron, chromium and nickel. In contrast, additional TEM analysis indicated the formation of AlFeSi phase type and AlCr. The results of the analyses referred to the structure of the batch. Due to the difficulty of obtaining recycled materials that do not contain these elements necessary to carry out further analyzes in the direction of defining the role of phosphorus in the formation of the so-called hard inclusions.
Go to article

Abstract

Measurements of pollutants scavenged from air masses over southern Svalbard in summer precipitation are presented. Rainfall was sampled in July and August 2002 at Calypsobyen, Bellsund. Specific conductivity (SpC) and pH were measured and ion concentrations were determined by ion chromatography. Ions of marine origin were subtracted, assuming that all chlorides were of marine origin. The FLEXTRA trajectory model was applied to discover the sources of air masses arriving at Svalbard and track the paths of pollutant transport. Average (v/w) rainfall pH was 4.94, mean SpC amounted to 34.8 µS cm-1. Total dissolved solids concentration (TDS) ranged from 12.6 to 67 mg L-1, with ions of marine origin (Cl-, Na+, Mg2+) prevailing. Rains with the highest percentage of marine salts occurred with winds from the East at above average velocities. Non-sea salt (nss) sulphate concentrations ranged from 0.5 µeq L-1 to 23 µeq L-1, (v/w) average was 17 µeq L-1. Nitrate concentrations ranged from 0 to 24 µeq L-1. The highest concentrations of nss-SO42- and NO3- were measured on 25 August, when the highest rainfall occurred (27 mm) and pH was the lowest (4.65). Rainfall at Calypsobyen deposited 194 kg km-2 of acidifying anions and 263 kg km-2 of base cations over the recording period. The polluted air masses were mostly from northern and central Europe. Rainfalls scavenging air masses formed over Greenland and Norwegian Seas displayed similar concentrations, being probably polluted by SOx and NOx from ship emissions.
Go to article

Abstract

The influence of aluminium (added in quantity from about 0.6% to about 2.8%) on both the alloy matrix and the shape of graphite precipitates in cast iron treated with a fixed amounts of cerium mischmetal (0.11%) and ferrosilicon (1.29%) is discussed in the paper. The metallographic examinations were carried out for specimens cut out of the separately cast rods of 20 mm diameter. It was found that the addition of aluminium in the amounts from about 0.6% to about 1.1% to the cast iron containing about 3% of carbon, about 3.7% of silicon (after graphitizing modification), and 0.1% of manganese leads to the occurrence of the ferrite-pearlite matrix containing cementite precipitates in the case of the treatment of the alloy with cerium mischmetal . The increase in the quantity of aluminium up to about 1.9% or up to about 2.8% results either in purely ferrite matrix in this first case or in ferrite matrix containing small amounts of pearlite in the latter one. Nodular graphite precipitates occurred only in cast iron containing 1.9% or 2.8% of aluminium, and the greater aluminium content resulted in the higher degree of graphite spheroidization. The noticeable amount of vermicular graphite precipitates accompanied the nodular graphite.
Go to article

Abstract

The influence of a shape of graphite precipitates in cast iron on the thermal shock resistance of the alloy was initially determined. Investigations included the nodular cast iron and the vermicular one, as well as the cast iron containing flake graphite. The thermal shock resistance was examined at a special laboratory stand which allowed for multiple heating and cooling of specimens within the presumed temperature range. The specimens were inductively heated and then cooled in water of constant temperature of about 30°C. There were used flat specimens 70 mm long, 5 mm thick in the middle part, and tapering like a wedge over a distance of 15 mm towards both ends. The total length of cracks generated on the test surfaces of the wedge-shaped parts of specimens was measured as a characteristic value inversely proportional to the thermal shock resistance of a material. The specimens heated up to 500°C were subjected to 2000 test cycles of alternate heating and cooling, while the specimens heated up to 600°C underwent 1000 such cycles. It was found that as the heating temperature rose within the 500-600°C range, the thermal shock resistance decreased for all examined types of cast iron. The research study proved that the nodular cast iron exhibited the best thermal shock resistance, the vermicular cast iron got somewhat lower results, while the lowest thermal shock resistance was exhibited by grey cast iron containing flake graphite.
Go to article

Abstract

The work determined the influence of aluminium in the amount from about 1% to about 7% on the graphite precipitates in cast iron with relatively high silicon content (3.4% to 3.90%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture and graphitized with ferrosilicon. The performed treatment resulted in occurring of compact graphite precipitates, mainly nodular and vermicular, of various size. The following parameters were determined: the area percentage occupied by graphite, perimeters of graphite precipitates per unit area, and the number of graphite precipitates per unit area. The examinations were performed by means of computer image analyser, taking into account four classes of shape factor. It was found that as the aluminium content in cast iron increases from about 1.1% to about 3.4%, the number of graphite precipitates rises from about 700 to about 1000 per square mm. For higher Al content (4.2% to 6.8%) this number falls within the range of 1300 – 1500 precipitates/mm2 . The degree of cast iron spheroidization increases with an increase in aluminium content within the examined range, though when Al content exceeds about 2.8%, the area occupied by graphite decreases. The average size of graphite precipitates is equal to 11-15 μm in cast iron containing aluminium in the quantity from about 1.1% to about 3.4%, and for higher Al content it decreases to about 6 μm.
Go to article

Abstract

The influence of aluminium added in amounts of about 1.6%, 2.1%, or 2.8% on the effectiveness of cast iron spheroidization with magnesium was determined. The cast iron was melted and treated with FeSiMg7 master alloy under industrial conditions. The metallographic examinations were performed for the separately cast rods of 20 mm diameter. They included the assessment of the shape of graphite precipitates and of the matrix structure. The results allowed to state that the despheroidizing influence of aluminium (introduced in the above mentioned quantities) is the stronger, the higher is the aluminium content in the alloy. The results of examinations carried out by means of a computer image analyser enabled the quantitative assessment of the considered aluminium addition influence. It was found that the despheroidizing influence of aluminium (up to about 2.8%) yields the crystallization of either the deformed nodular graphite precipitates or vermicular graphite precipitates. None of the examined specimens, however, contained the flake graphite precipitates. The results of examinations confirmed the already known opinion that aluminium widens the range of ferrite crystallization.
Go to article

Abstract

The article is focused on thermomechanical and plastic properties of two high-manganese TRIPLEX type steels with an internal marking 1043 and 1045. Tensile tests at ambient temperature and at a temperature interval 600°C to 1100°C were performed for these heats with a different chemical composition. After the samples having been ruptured, ductility was observed which was expressed by reduction of material after the tensile test. Then the stacking fault energy was calculated and dilatation of both high-manganese steels was measured. At ambient temperature (20°C), 1043 heat featured higher tensile strength by 66MPa than 1045 heat. Microhardness was higher by 8HV0,2 for 1045 steel than for 1043 steel (203HV0,2). At 20°C, ductility only differed by 3% for the both heats. Decrease of tensile properties occurred at higher temperatures of 600 up to 1100°C. This tensile properties decrease at high temperatures is evident for most of metals. The strength level difference of the both heats in the temperature range 20°C up to 1100°C corresponded to 83 MPa, while between 600°C and 1100°C the difference was only 18 MPa. In the temperature range 600°C to 800°C, a decrease in ductility values down to 14 % (1045 heat), or 22 % (1043 heat), was noticed. This decrease was accompanied with occurrence of complex Aluminium oxides in a superposition with detected AlN particles. Further ductility decrease was only noted for 1043 heat where higher occurrence of shrinkag porosity was observed which might have contributed to a slight decrease in reduction of area values in the temperature range 900°C to 1100°C, in contrast to 1045 heat matrix.
Go to article

Abstract

The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%). After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si), only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.
Go to article

Abstract

Two MgLiAl alloys of composition 4.5% Li and 1.5% Al (in wt.%) composed of α phase and of 9% Li, 1.5% Al composed of α (hcp) + β (bcc) phases were subjected to twist channel angular pressing (TCAP) deformation. Such deformation of α + β alloys caused less effective grain refinement than that of single α phase alloy. However, with increasing number of passes, grain size of single α phase alloy increased and that of β phase in two phase α + β alloy also grew, which suggested the effect of dynamic recrystallization. TEM studies allowed identifying particles of Li2MgAl phase of size of few μm. {001}<100> texture was observed in extruded alloy. Texture studies of extruded and TCAPed single phase hcp alloy indicated texture with {101 – 0} plane perpendicular to the extrusion direction and {0002} plane parallel to the extrusion direction. Duplex α + β alloys showed poor texture development.
Go to article

This page uses 'cookies'. Learn more