Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.
Go to article

Abstract

The paper presents the results of basic research on the influence of the properties of sand grains on electrical properties of water glass moulding sands. It shows electrical properties of the main component – sand grains, crucial to the kinetics of moulding sands heating, such as permittivity εr and loss factor tgδ. Measurements were carried out with the use of the perturbation method for silica, chromite and olivine sands of different mineral, chemical composition and particle size distribution, as well as for moulding sands with water glass grade 145. Analysis of the results of measurements of electrical properties shows that all moulding sands are characterized by a similar permittivity εr and loss factor tgδ. It was found that the electrical properties and the quantity and quality of other components may have a decisive influence on the effectiveness and efficiency of the microwave heating of moulding sands with sand grains. In determining the ability to efficiently absorb the microwave radiation for mixtures which moulding sands are, the impact of all components influencing their individual technological parameters should be taken into account.
Go to article

Abstract

The results of researches of sorption processes of surface layers of components of sand moulds covered by protective coatings are presented in the hereby paper. Investigations comprised various types of sand grains of moulding sands with furan resin: silica sand, reclaimed sand and calcined in temperature of 700oC silica sand. Two kinds of alcoholic protective coatings were used – zirconium and zirconium – graphite. Tests were performed under condition of a constant temperature within the range 30 – 35oC and high relative air humidity 75 - 80%. To analyze the role of sand grains in sorption processes quantitavie moisture sorption with use of gravimetric method and ultrasonic method were used in measurements. The tendency to moisture sorption of surface layers of sand moulds according to the different kinds of sand grains was specified. The effectiveness of protective action of coatings from moisture sorption was analyzed as well. Knowledge of the role of sand grains from the viewpoint of capacity for moisture sorption is important due to the surface casting defects occurrence. In particular, that are defects of a gaseous origin caused by too high moisture content of moulds, especially in surface layers.
Go to article

Abstract

Eighteen sediment samples from a 36 cm long sediment core retrieved from a proglacial lake (namely P 11) situated in the Schirmacher Oasis, East Antarctica, were analysed for the study of quartz grain morphology and microtexture, along with sand percentage, to reconstruct the paleoenvironmental changes in the lake during the Holocene. The age of the core ranges from 3.3 ka BP to 13.9 ka BP. The quartz grain morphology and microtexture reveal significant evidences of glacial transport along with some eolian and aqueous activities. On the basis of predominance of these signatures and the zonation from CONISS Cluster Analysis on the percentages of characteristic grain morphology and microtextures, the entire core has been subdivided into three major zones. From the paleoenvironmental perspective, it can be concluded that there is an onset of interglacial period at the advent of Holocene (12.3 ka BP), which reigned until 5.3 ka BP and thereafter, again a glacial environment prevailed until 3.3 ka BP with some variations in-between. The results indicate probable alternative colder and less colder phases in the study area, which are also well supported by the respective sand percentages in the sediments. © 2017 Polish Academy of Sciences 2017.
Go to article

This page uses 'cookies'. Learn more