Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The authors established the chemical and phase compositions of grain fractions of the magnesia carbon scrap disintegrated using industrial cone crushers. The investigations included chemical and XRD analyses and optical investigations. The contents of admixtures: SiO2, CaO, Fe2O3 and Al2O3 increase with the decreasing size of the scrap grain fractions, whereas the C/S ratio decreases in finer and finer fractions due to changes of the phase composition. These relations are caused by the presence of low-fusible silicate phases, characterized by their cleavage and brittleness. Such phases were mainly derived from the graphite ash containing a high silica content. The scrap after removing its finest grain fractions can be recycled and utilized for producing the magnesia-carbon refractory materials. However, the finest grain fractions may be used, e.g. as a component of gunite mixes. Many years of experience collected by the ArcelorMittal Refractories Ltd., Krakow, Poland in the field of refractory scrap utilization has also been presented.
Go to article

Abstract

In this paper results of microstructural observations for series of CuZn39Pb2 alloys produced from qualified scraps are presented. The individual alloy melts were differentiated in terms of thermal parameters of continuous casting as well as refining methods and modifications. Structural observations performed by SEM and TEM revealed formation of different types of intermetallic phases including “hard particles”. EDS results show that “hard particles” are enrich in silicon, phosphorus, iron, chromium and nickel elements. Additionally, formation of Al-Fe-Si and Al-Cr in alloy melts was observed as well. It was found that quantity and morphology of intermetallic phases strongly depends upon the chemical composition of raw materials, process parameters, modifiers and refining procedure applied during casting. It was observed that refining process results in very effective refinement of intermetallic phases, whereas modifiers, particularly carbon-based, results in formation of large particles in the microstructure.
Go to article

Abstract

Steel and cast-iron products, due to their low price and beneficial properties, are the most widely used among metals; their consumption has become an indicator of the economic development of countries. The characteristics of iron raw materials, in relation to current metallurgical requirements, are presented in the present this article. The globalization of the trade and development of steelmaking technologies have caused significant changes in the quality of raw materials in the last half-century forcing improvements in processing technologies. In many countries, standard concentrates (at least 60% Fe) are almost twice as rich as those processed in the mid-20th century. Methods of quality assessment have been improved and quality standards tightened. The quality requirements for the most important raw materials ‒ iron ores and concentrates, steel scrap, major alloy metals, coking coal, and coke, as well as gas and other energy media ‒ are reviewed in the present paper. Particular attention is paid to the quality testing methodology. The quality of many raw materials is evaluated multi-parametrically: both chemical and physical characteristics are important. Lower-quality parameters in raw materials equate to significantly lower prices obtained by suppliers in the market. The markets for these raw materials are diversified and governed by separate sets of newly introduced rules. Price benchmarks (e.g. for standard Australian metallurgical coal) or indices (for iron concentrates) apply. Some raw materials are quoted within the framework of the commodity market system (certain alloying components and steel scrap). The abandonment of the long-established system of multi-annual contracts has led to wide fluctuations in prices, which have reached a scale similar to that of other metals.
Go to article

Abstract

Electron beam melting(EBM) is a useful technique to obtain high-purity metal ingots. It is also used for melting refractory metals such as tantalum, which require melting techniques employing a high-energy heat source. Drawing is a method which is used to convert the ingot into a wire shape. The required thickness of the wire is achieved by drawing the ingot from a drawing die with a hole of similar size. This process is used to achieve high purity tantalum springs, which are an essential component of lithography lamp in semiconductor manufacturing process. Moreover, high-purity tantalum is used in other applications such as sputtering targets for semiconductors. Studies related to recycling of tantalum from these components have not been carried out until now. The recycling of tantalum is vital for environmental and economic reasons. In order to obtain high-purity tantalum ingot, in this study impurities contained in the scrap were removed by electron beam melting after pre-treatment using aqua regia. The purity of the ingot was then analyzed to be more than 4N5 (99.995%). Subsequently, drawing was performed using the rod melted by electron beam melting. Owing to continuous drawing, the diameter of the tantalum wire decreased to 0.5 mm from 9 mm. The hardness and oxygen concentration of the tantalum ingot were 149 Hv and less than 300 ppm, respectively, whereas the hardness of the tantalum wire was 232.12 Hv. In conclusion, 4N5 grade tantalum wire was successfully fabricated from tantalum scrap by EBM and drawing techniques. Furthermore, procedure to successfully recycle Tantalum from scraps was established.
Go to article

Abstract

A356 is one of the widely used aluminium casting alloy that has been used in both sand and die casting processes. Large amounts of scrap metal can be generated from the runner systems and feeders. In addition, chips are generated in the machined parts. The surface area with regard to weight of chips is so high that it makes these scraps difficult to melt. Although there are several techniques evolved to remedy this problem, yet the problem lies in the quality of the recycled raw material. Since recycling of these scrap is quite important due to the advantages like energy saving and cost reduction in the final product, in this work, the recycling efficiency and casting quality were investigated. Three types of charges were prepared for casting: %100 primary ingot, %100 scrap aluminium and fifty-fifty scrap aluminium and primary ingot mixture were used. Melt quality was determined by calculating bifilm index by using reduced pressure test. Tensile test samples were produced by casting both from sand and die moulds. Relationship between bifilm index and tensile strength were determined as an indication of correlation of melt quality. It was found that untreated chips decrease the casting quality significantly. Therefore, prior to charging the chips into the furnace for melting, a series of cleaning processes has to be used in order to achieve good quality products.
Go to article

Abstract

Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.
Go to article

This page uses 'cookies'. Learn more