Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper deals with the issue of potential for improvement of resistance of wood chip fine grinders to abrasive wear by providing them with WCCoCr coating applied with the use of atmospheric plasma spraying (APS). The study focused on establishing parameters of the technological process of spraying a 250–270 μm thick coating onto surface of ductile cast iron castings used to date as grinder linings. The presented data include results of microstructure examination, chemical composition analysis, HV hardness measurements, and scratch tests for both previous and new variant of linings. The obtained scratch test results indicate that the material of the coating is characterized with definitely lower susceptibility to scratching. The scratch made on coating was 75–84 μm wide and 7.2–8.2 μm deep, while the scratch on cast iron was distinctly wider (200–220 μm) and deeper (8.5–12.8 μm). In case of cast iron, the range of variability in scratch width and depth was definitely larger. This can be explained with large difference in hardness of individual components of microstructure of cast iron and significantly larger plastic deformation of cast iron compared to the coating revealed in the course of indenter motion over surfaces of the two materials. It has been found that application of WCCoCr coating offered better resistance of lining surfaces to scratching which can be considered a rationale for undertaking in-service tests.
Go to article

Abstract

This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic ­Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10–1 mm3 and 7.8×10–2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.
Go to article

This page uses 'cookies'. Learn more