Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The results of investigations on the coccidian parasites of three species of penguins ( Pygoscelis antarctica , P. papua and P. adeliae ), nesting at Livingston and King George Island (South Shetland Islands, the Antarctic) are presented. Three coccidian para− sites: Eimeria pygosceli Golemansky, 2003, Eimeria sp. and Isospora sp. were identified in faecal samples from 360 examined birds. The total prevalence of coccidian parasites was high: about 35% in all of examined penguins. No host specificity was observed. It is attributed due to the close phylogenetic relations, common habitats and nesting territories, similar feeding and reproductive biology of the three penguin species. In more than 20 specimens of investigated penguins a high intensity of oocysts in their guano was observed (80–220 oocysts in one microscopic field at magnification of 150×) an indirect indication of the negative role of the coccidian infections on penguin populations.
Przejdź do artykułu

Abstrakt

Two new species of desmosomatid isopods, Eugerdella margaretae sp. n. and Eugerdella celata sp. n. are described from Admiralty Bay, King George Island, South Shetlands. Information is added to the original description of Eugerdella falklandica (Nordenstam, 1933) based on re−examination of the holotype. Both new species are similar to E. falklandica, for example by the body shape, the shape of pleotelson and presence of rows of four horn−like spines on the head. They are distinguished from E. falklandica by the number of setae on pereopod articles. Eugerdella celata sp. n. is distinguished by the presence of ventral spines on pereonites 1–4
Przejdź do artykułu

Abstrakt

Populations of Antarctic hairgrass Deschampsia antarctica Desv. from King George Island exhibit variation in many traits. The reason for that is not evident and could be addressed to variable environmental conditions. Obviously, phenotypic variation could be due to stable or temporal changes in expression pattern as the result of adaptation. Stable changes could be due to mutations or site DNA methylation variation that modified expression pattern. Recently, metAFLP approach was proposed to study such effects. A variant of methylation sensitive AFLP (Amplified Fragment Length Polymorphism), based on the isoschizomeric combinations Acc65 I/ Mse I and Kpn I/ Mse I was applied to analyze the sequence and site DNA methylation differences between two D. antarctica populations exhibiting morphological dissimilarities. Both DNA sequence mutations and site methylation pattern alternations were detected among and within analyzed populations. It is assumed that such changes might have originated as the response to environmental conditions that induced site methylation alternations leading to phenotypic variation of D. antarctica populations from South Shetland Islands.
Przejdź do artykułu

Abstrakt

The climatic change on King George Island (KGI) in the South Shetland Islands, Antarctica, in the years of 1948–2011 are presented. In the reference period, a statistically significant increase in the air temperature (0.19 ° C/10 years, 1.2 ° C in the analysed period) occurred along with a decrease in atmospheric pressure (−0.36 hPa/10 years, 2.3 hPa). In winter time, the warming up is more than twice as large as in summer. This leads to decrease in the amplitude of the annual cycle of air temperature. On KGI, there is also a warming trend of daily maximum and daily minimum air temperature. The evidently faster increase in daily minimum results in a decrease of the diurnal temperature range. The largest changes of air pressure took place in the summertime (−0.58 hPa/10 years) and winter (−0.34 hPa/10 years). The Semiannual Oscillation pattern of air pressure was disturbed. Climate changes on KGI are correlated with changing surface temperatures of the ocean and the concentration of sea ice. The precipitation on KGI is characterised by substantial variability year to year. In the analysed period, no statistically significant trend in atmospheric precipitation can be observed. The climate change on KGI results in substantial and rapid changes in the environment, which poses a great threat to the local ecosystem.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji