Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The presence of the chunky graphite is unwanted in the cast iron with the spheroidal graphite for this significantly lowers the properties of the ductile iron. This shape of the graphite is formed as the result of the slow cooling rate of the castings with large thermal point and also due to the presence of the elements which suppress the formation of the spheroidal graphite and support formation of the chunky graphite. The spheroidal graphite present in the ductile iron assures the excellent mechanical properties, while the chunky graphite significantly reduces those properties of the ductile iron. Therefore it is of importance to assume conditions under which prevented is the formation of the chunky graphite. The casts were carried out under the conditions of the regular operation of the foundry and tested were various types of modifiers and inoculators and also pre-inoculators containing the elements suppressing the formation of the chunky graphite (Al, Sb a Ba). Applied were also the chromium breaker core to suppress the formation chunky graphite which was present in the structure in the places after the feeders elimination. As whole, executed were eight casts with various types of the modifiers and inoculators.
Go to article

Abstract

Some metallographic studies performed on the basis of the massive forging steel static ingot, on its cross-section, allowed to reveal the following morphological zones: a/ columnar grains (treated as the austenite single crystals), b/ columnar into equiaxed grains transformation, c/ equiaxed grains at the ingot axis. These zones are reproduced theoretically by the numerical simulation. The simulation was based on the calculation of both temperature field in the solidifying large steel ingot and thermal gradient field obtained for the same boundary conditions. The detailed analysis of the velocity of the liquidus isotherm movement shows that the zone of columnar grains begins to disappear at the first point of inflection and the equiaxed grains are formed exclusively at the second point of inflection of the analyzed curve. In the case of the continuously cast brass ingots three different morphologies are revealed: a/ columnar structure, b/ columnar and equiaxed structure with the CET, and c/ columnar structure with the single crystal formation at the ingot axis. Some forecasts of the temperature field are proposed for these three revealed morphologies. An analysis / forecast of the behavior of the operating point in the mold is delivered for the continuously cast ingot. A characteristic delay between some points of breakage of the temperature profile recorded at the operating point and analogous phenomena in the solidifying alloy is postulated.
Go to article

This page uses 'cookies'. Learn more