Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

An analysis has been carried out of the influence of annealing time at the preheating temperature of 650 °C on the change in hardness and alloy structure of lamellar graphite cast iron in the working as well as in the laboratory conditions. This preheat temperature is common during reclaiming welding of castings with complex shapes. The changes in unalloyed cast iron EN-GJL 200 to EN-GJL 300 according to ISO 1690 standard and cast iron with low amount of elements such as Sn, Cu, Cr, and Mo and their combinations were assessed. It was found that the cast iron of higher strength grades has better hardness and structural stability. Cast iron alloyed with chromium or its combinations has the highest stability. In unalloyed cast iron, a partial degradation of pearlite occurs; in alloyed cast iron the structural changes are not conclusive.
Go to article

Abstract

Materials based on cast irons are often used for protection against wear. One of the methods of creating protective surface with cast iron structures is hardfacing. The application of hardfacing with self shielded flux cored wire with high carbon content is one of the economical ways often used to protect machinery parts exposed to both abrasion and erosion. The wear resistance of hardfacings depends on their chemical composition, structure obtained after hardfacing, parameters of depositing process and specific conditions of wear. As the base material in the investigation the steel grade S235JR was used. The wear behavior mechanism of hardfacings made with one type of self shielded flux cored wire and different process parameters were evaluated in this paper. Structures obtained in deposition process were different in hardness, amount of carbides and resistance to wear with two investigated impingement angles. The erosion tests showed that impingement angle 30° gives lower erosion rate than angle 60°.
Go to article

This page uses 'cookies'. Learn more