Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

This research presents a comparative study for maximum power point tracking (MPPT) methodologies for a photovoltaic (PV) system. A novel hybrid algorithm golden section search assisted perturb and observe (GSS-PO) is proposed to solve the problems of the conventional PO (CPO). The aim of this new methodology is to boost the efficiency of the CPO. The new algorithm has a very low convergence time and a very high efficiency. GSS-PO is compared with the intelligent nature-inspired multi-verse optimization (MVO) algorithm by a simulation validation. The simulation study reveals that the novel GSS-PO outperforms MVO under uniform irradiance conditions and under a sudden change in irradiance.
Go to article

Abstract

A substantial quantity of research on muffler design has been restricted to a low frequency range using the plane wave theory. Based on this theory, which is a one-dimensional wave, no higher order wave has been considered. This has resulted in underestimating acoustical performances at higher frequencies when doing muffler analysis via the plane wave model. To overcome the above drawbacks, researchers have assessed a three-dimensional wave propagating for a simple expansion chamber muffler. Therefore, the acoustic effect of a higher order wave (a high frequency wave) is considered here. Unfortunately, there has been scant research on expansion chamber mufflers equipped with baffle plates that enhance noise elimination using a higher-order-mode analysis. Also, space-constrained conditions of industrial muffler designs have never been properly addressed. So, in order to improve the acoustical performance of an expansion chamber muffler within a constrained space, the optimization of an expansion chamber muffler hybridized with multiple baffle plates will be assessed. In this paper, the acoustical model of the expansion chamber muffler will be established by assuming that it is a rigid rectangular tube driven by a piston along the tube wall. Using an eigenfunction (higher-order-mode analysis), a four-pole system matrix for evaluating acoustic performance (STL) is derived. To improve the acoustic performance of the expansion chamber muffler, three kinds of expansion chamber mufflers (KA-KC) with different acoustic mechanisms are introduced and optimized for a targeted tone using a genetic algorithm (GA). Before the optimization process is performed, the higher-order-mode mathematical models of three expansion chamber mufflers (A-C) with various allocations of inlets/outlets and various chambers are also confirmed for accuracy. Results reveal that the STL of the expansion chamber mufflers at the targeted tone has been largely improved and the acoustic performance of a reverse expansion chamber muffler is more efficient than that of a straight expansion chamber muffler. Moreover, the STL of the expansion chamber mufflers will increase as the number of the chambers that separate with baffles increases.
Go to article

Abstract

Cooling of the hot gas path components plays a key role in modern gas turbines. It allows, due to efficiency reasons, to operate the machines with temperature exceeding components' melting point. The cooling system however brings about some disadvantages as well. If so, we need to enforce the positive effects of cooling and diminish the drawbacks, which influence the reliability of components and the whole machine. To solve such a task we have to perform an optimization which makes it possible to reach the desired goal. The task is approached in the 3D configuration. The search process is performed by means of the evolutionary approach with floatingpoint representation of design variables. Each cooling structure candidate is evaluated on the basis of thermo-mechanical FEM computations done with Ansys via automatically generated script file. These computations are parallelized. The results are compared with the reference case which is the C3X airfoil and they show a potential stored in the cooling system. Appropriate passage distribution makes it possible to improve the operation condition for highly loaded components. Application of evolutionary approach, although most suitable for such problems, is time consuming, so more advanced approach (Conjugate Heat Transfer) requires huge computational power. The analysis is based on original procedure which involves optimization of size and location of internal cooling passages of cylindrical shape within the airfoil. All the channels can freely move within the airfoil cross section and also their number can change. Such a procedure is original.
Go to article

Abstract

In the paper an application of evolutionary algorithm to design and optimization of combinational digital circuits with respect to transistor count is presented. Multiple layer chromosomes increasing the algorithm efficiency are introduced. Four combinational circuits with truth tables chosen from literature are designed using proposed method. Obtained results are in many cases better than those obtained using other methods.
Go to article

Abstract

The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Go to article

Abstract

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.
Go to article

Abstract

In order to enhance the acoustical performance of a traditional straight-path automobile muffler, a multi-chamber muffler having reverse paths is presented. Here, the muffler is composed of two internally parallel/extended tubes and one internally extended outlet. In addition, to prevent noise transmission from the muffler’s casing, the muffler’s shell is also lined with sound absorbing material. Because the geometry of an automotive muffler is complicated, using an analytic method to predict a muffler’s acoustical performance is difficult; therefore, COMSOL, a finite element analysis software, is adopted to estimate the automotive muffler’s sound transmission loss. However, optimizing the shape of a complicated muffler using an optimizer linked to the Finite Element Method (FEM) is time-consuming. Therefore, in order to facilitate the muffler’s optimization, a simplified mathematical model used as an objective function (or fitness function) during the optimization process is presented. Here, the objective function can be established by using Artificial Neural Networks (ANNs) in conjunction with the muffler’s design parameters and related TLs (simulated by FEM). With this, the muffler’s optimization can proceed by linking the objective function to an optimizer, a Genetic Algorithm (GA). Consequently, the discharged muffler which is optimally shaped will improve the automotive exhaust noise.
Go to article

This page uses 'cookies'. Learn more