Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Available methods for room-related sound presentation are introduced and evaluated. A focus is put on the synthesis side rather than on complete transmission systems. Different methods are compared using common, though quite general criteria. The methods selected for comparison are: Intensity Stereophony after Blumlein, vector-base amplitude panning (VBAP), 5.1-Surround and its discrete-channel derivatives, synthesis with spherical harmonics (Ambisonics, HOA), synthesis based on the boundary method, namely, wave-field synthesis (WFS), and binaural-cue selection methods (e.g., DiRAC). While VBAP, 5.1-Surround and other discrete-channel-based methods show a number of practical advantages, they do, in the end, not aim at authentic sound-field reproduction. The so-called holophonic methods that do so, particularly, HOA and WFS, have specific advantages and disadvantages which will be discussed. Yet, both methods are under continuous development, and a decision in favor of one of them should be taken from a strictly application-oriented point of view by considering relevant application-specific advantages and disadvantages in detail.
Go to article

Abstract

This paper analyses the performance of Differential Head-Related Transfer Function (DHRTF), an alternative transfer function for headphone-based virtual sound source positioning within a horizontal plane. This experimental one-channel function is used to reduce processing and avoid timbre affection while preserving signal features important for sound localisation. The use of positioning algorithm employing the DHRTF is compared to two other common positioning methods: amplitude panning and HRTF processing. Results of theoretical comparison and quality assessment of the methods by subjective listening tests are presented. The tests focus on distinctive aspects of the positioning methods: spatial impression, timbre affection, and loudness fluctuations. The results show that the DHRTF positioning method is applicable with very promising performance; it avoids perceptible channel coloration that occurs within the HRTF method, and it delivers spatial impression more successfully than the simple amplitude panning method.
Go to article

This page uses 'cookies'. Learn more