Search results

Filters

  • Journals

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

A questionnaire inquiry on response to wind turbine noise was carried out on 361 subjects living in the vicinity of 8 wind farms. Current mental health status of respondents was assessed using Goldberg General Health Questionnaire GHQ-12. For areas where respondents lived, A-weighted sound pressure levels (SPLs) were calculated as the sum of the contributions from the wind power plants in the specific area. Generally, 33.0% of respondents were annoyed outdoors by wind turbine noise at the calculated A-weighted SPL of 31-50 dB, while indoors the noise was annoying to 21.3% of them. The proportion of subjects evaluating the noise produced by operative wind turbines as annoying decreased with increasing the distance from the nearest wind turbine (27.6% at the distance of 400-800 m vs 14.3% at the distance above 800 m, p < 0.016). On the other hand, the higher was the noise level, the greater was the percentage of annoyed respondents (14.0% at SPL up to 40 dB vs 28.1% at SPL of 40-45 dB, p < 0.016). Besides noise and distance categories, subjective factors, such as general attitude to wind turbines, sensitivity to landscape littering and current mental health status, were found to have significant impact on the perceived annoyance. About 50% of variance in annoyance rating might be explained by the aforesaid subjective factors.
Go to article

Abstract

The paper shows a study on the relationship between noise measures and sound quality (SQ) features that are related to annoyance caused by the traffic noise. First, a methodology to perform analyses related to the traffic noise annoyance is described including references to parameters of the assessment of road noise sources. Next, the measurement setup, location and results are presented along with the derived sound quality features. Then, statistical analyses are performed to compare the measurement results and sound quality features. The included conclusions are focused on showing that the obtained loudness values, regardless of the used system, are similar in a statistical sense. Contrarily, sharpness, roughness and fluctuation strength values differ for the tools employed.
Go to article

Abstract

The aim of the study was to investigate how the time structure of a road-traffic affects the noise annoyance judgment. In a psychoacoustic experiment, the listeners judged noise annoyance of four road-traffic noise scenarios with identical numbers of vehicles and LAeq, T value but different time structure of a road traffic. The traffic structure varied from even to highly clustered across different scenarios. The scenarios were created in the laboratory from a large set of a single vehicle pass-by recordings. The scenarios were additionally filtered with filters corresponding to a typical window transfer function to simulate the situation inside the building. The experimental results showed that there is a significant difference in annoyance judgment for different traffic structures with the same LAeq, T value. The highest annoyance ratings were obtained for even traffic distribution and the most clustered distribution resulted in the lowest annoyance rating. These results correlated well with the averaged loudness, whereas the percentile loudness (N5) and level (L5) predict the opposite results.
Go to article

Abstract

Annoyance ratings for artificially created noises, resembling the main characteristics of temporal wind turbine noise, were studied by means of a listening experiment involving 21 participants with normal hearing. Three types of stimuli were examined: broadband noise (−4 dB/octave), noise generated by moving cars, and narrowband noise. All stimuli had the sound level fluctuations typical for wind turbine noise. The magnitude of the sound level fluctuations was measured in a quantitative way, by using the characteristics of amplitude modulated sound: modulation rate and modulation depth. Our aim was to examine how the modulation rate and the modulation depth influence the noise annoyance assessment of broadband and narrowband amplitude modulated noises. Three different modulation rates, 1, 2 and 4 Hz, and sound level fluctuations (a measure of the modulation depth), 3, 6, 9 dB, were applied to each type of stimuli (with exception of noise generated by the moving cars) and investigated. The participants in the listening experiment were presented with sound stimuli in laboratory conditions and asked to rate their annoyance on a numerical scale. The results have shown a significant difference between the investigated conditions. The effect was particularly strong between the annoyance judgments of different types of noise (narrow and broadband), and modulated versus unmodulated noises. Temporal fluctuations occurring in wind turbine noise are very pertinent to the perception of annoyance and could be responsible for its being a relatively annoying noise source. The obtained results were discussed and compared to the typical modulation rates and level changes that occur in recordings of real wind turbine noise.
Go to article

Abstract

The paper presents results of three socio-acoustic surveys conducted in an interval of twelve years, between 2001 and 2013, in a large Romanian city, Cluj-Napoca. The purpose of the surveys was to assess the awareness of residents on urban noise and the extent to which the noise environment affects their everyday life, behavior and health. The surveys were conducted in 2001, 2009 and 2013. The questionnaire used in the first survey had 16 questions and it was verified prior to study through a pilot survey, being corrected and improved. For the second and the third study, the questionnaire was enriched with eight more questions, regarding essentially the description of the residential area, criteria for its selection and also awareness about the noise map of the city. The analysis of responses defines the main characteristics of the local pattern of annoyance and reaction of the urban population to the environmental noise.
Go to article

Abstract

An important aspect in assessing noise in urban agglomerations is the subjective one, which takes into account the sensitivity and specific reactions of residents to the noise in their living environment. This paper presents results of a sociological study initiated to determine the population awareness, regarding the urban acoustic environment and estimation of effects and disturbance. The survey was conducted in a Romanian city, to complement the information provided by the strategic noise map of the area. This approach allows the estimation of specific local patterns of reaction and response to urban noise of the exposed population and provides the information, needed to develop action plans and to set proper solutions for urban area planning.
Go to article

Abstract

The assessment of teachers' exposure to noise in primary schools was carried out on the basis of: questionnaire studies (covering 187 teachers in 3 schools), noise measurements at the teachers' workplaces, measurements of the school rooms acoustic properties (reverberation time and speech transmission index STI in 72 classrooms), analysis of statistical data regarding hazards and occupational diseases in the education sector. The studies have shown that noise is the main factor of annoyance in the school environment. Over 50% of questioned teachers consider noise as annoying and near 40% as very annoying or unbearable. A-weighted equivalent continuous sound pressure levels measured in classrooms, teacher rooms and common rooms are in the range of 58-80 dB and they exceed 55 dB (criteria of noise annoyance). The most frequently reported subjective feelings and complaints (over 90%) are: growth of psychical and emotional tension, irritation, difficulties in concentrating, hoarseness, cough. Noise in schools is also a harmful factor. High A-weighted equivalent continuous sound pressure levels ranging from 80 to 85 dB, measured in corridors during pauses and in sports halls, can cause the risk of hearing damage among PE teachers and persons oversensitive to noise. The latter concerns both teachers and pupils. High background noise levels (55-65 dB) force teachers to raise their voice. It can lead to the development of an occupational disease - chronic voice disorders due to excessive vocal effort lasting for at least 15 years. In the education sector 785 new cases of this disease were reported only in 2008. Poor acoustics in classrooms (reverberation time ranging from 0.8 to 1.7 s, STI < 0.6 in 50% of classrooms) have an adverse influence on speech reception and make the teaching and learning processes difficult.
Go to article

Abstract

The present study was conducted in the lobbies of 16 Taiwanese urban hospitals to establish what contributes to the degree of noisiness experienced by patients and those accompanying them. Noise level measurements were then conducted by 15 min equivalent sound pressure levels (LAeq, 15m, dB) during daytime hours. The average LAeq itself was found to be poorly related to perceived noisiness. Levels variations were better correlated, more continual noise may actually be perceived as noisier. According to the findings of a multiple linear stepwise regression model (r = 0.91, R2 = 0.83), the 3 independent variables shown to have the largest effects on perceived noisiness were 1) 1/(L5 − L95), 2) effective duration of the normalized autocorrelation function (τe, h), of all LAeq, 15m over 9–17, and 3) percentile loudness, N5, 15m. These results resemble previous studies that had assumed that a larger fluctuation of noise level corresponds to less annoyance experienced for mixed traffic noise studied in a laboratory situation. As an advanced approach, for hospital noise that consisted of 12 audible noise events, subjective noisiness were evaluated by the noise time structure analyzed by autocorrelation with loudness and levels variation.
Go to article

Abstract

During operation, construction machines generate high noise levels which can adversely affect the health and the job performance of operators. The noise control techniques currently applied to reduce the noise transmitted into the operator cab are all based on the decrease of the sound pressure level. Merely reducing this noise parameter may be suitable for the compliance with the legislative requirements but, unfortunately, it is not sufficient to improve the subjective human response to noise. The absolute necessity to guarantee comfortable and safe conditions for workers, requires a change of perspective and the identification of different noise control criteria able to combine the reduction of noise levels with that of psychophysical descriptors representing those noise attributes related to the subjective acoustical discomfort. This paper presents the results of a study concerning the “customization” of a methodology based on Sound Quality for the noise control of construction machines. The purpose is to define new hearing-related criteria for the noise control able to guarantee not only reduced noise levels at the operator position but also a reduced annoyance perception.
Go to article

This page uses 'cookies'. Learn more