Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The results of investigations of sand shooting into the core box are presented in the hereby paper. The investigations concern the formation of the diphase sand-air flux, its motion, flowing and compaction in the cavity during the core forming. Conditions deciding on the course of individual phases of the process are discussed with taking into consideration the influence of such factors as: the shot pressure, shooting hole diameter, number and distribution of deaerating vents in experimental core boxes (of a single cavity and of multi cavities) on the core sand compaction state. Investigations were performed by means of the modernised experimental shooting machine SR-3D, of the shooting chamber volume of 3.3 dm3, connected with the system of pneumatic supply ensuring the stable pressure supply of values: 0.4 MPa, 0.5 MPa and 0.6 MPa. Two diameters of the shooting hole, equal 10 mm and 20 mm, were applied for filling three experimental core boxes differing in dimensions of cavities and in number and distribution of deaerating vents. The filling process of core boxes was recorded by means of the digital camera PHANTOM V210 with the filming rate of 3000 pictures in second. Simultaneously, during the shot, other values allowing to determine the intensity of the core sand outflow from the shooting chamber to the core box, were tested. The presented in this publication results constitute the important element of the experimental verification of the blowing process simulation calculations which will be performed.
Go to article

Abstract

This paper deals with the possibilities of using physical modelling to study the degassing of metal melt during its treatment in the refining ladle. The method of inert gas blowing, so-called refining gas, presents the most common operational technology for the elimination of impurities from molten metal, e.g. for decreasing or removing the hydrogen content from liquid aluminium. This refining process presents the system of gas-liquid and its efficiency depends on the creation of fine bubbles with a high interphase surface, uniform distribution, long period of its effect in the melt, and mostly on the uniform arrangement of bubbles into the whole volume of the refining ladle. Physical modelling represents the basic method of modelling and it makes it possible to obtain information about the course of refining processes. On the basis of obtained results, it is possible to predict the behaviour of the real system during different changes in the process. The experimental part focuses on the evaluation of methodical laboratory experiments aimed at the proposal and testing of the developed methods of degassing during physical modelling. The results obtained on the basis of laboratory experiments realized on the specific physical model were discussed.
Go to article

Abstract

The results of model investigations of the influence of the blowing process selected parameters on the distribution of the compaction of the core made by the blowing method, are presented in the hereby paper. These parameters were: shooting pressure, shooting hole diameter, amount and distribution of deaerating holes. Investigations were performed using the horizontal core box of the cuboidal cavity and the same core box into which inner inserts were introduced. These inserts were dividing the primary volume into three sectors differing in their direction, introduction conditions and the character of the core sand flow. As the compaction measure the apparent sand density was assumed. The density was determined in five measuring points in case of uniform cores, and in three measuring points in case of cores obtained in the core box with three separated sectors. The apparent density of the compacted core sand in the core box cavity was determined on the basis of the measurements of masses and volumes of samples cut-out from the determined core places by means of the measuring probe. Investigations were performed at three values of the working pressure equal 0.4, 0.5 and 0.6MPa for two diameters of the shooting hole: 10 and 20 mm. During tests the core box deaeration, controlled by an activisation of the determined number of deaerating vents placed in the core box, was also subjected to changes.
Go to article

This page uses 'cookies'. Learn more