Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Three commercially available intercooled compression strategies for compressing CO2 were studied. All of the compression concepts required a final delivery pressure of 153 bar at the inlet to the pipeline. Then, simulations were used to determine the maximum safe pipeline distance to subsequent booster stations as a function of inlet pressure, environmental temperature, thickness of the thermal insulation and ground level heat flux conditions. The results show that subcooled liquid transport increases energy efficiency and minimises the cost of CO2 transport over long distances under heat transfer conditions. The study also found that the thermal insulation layer should not be laid on the external surface of the pipe in atmospheric conditions in Poland. The most important problems from the environmental protection point of view are rigorous and robust hazard identification which indirectly affects CO2 transportation. This paper analyses ways of reducing transport risk by means of safety valves.
Go to article

Abstract

The paper deals with numerical modelling of carbon dioxide capture by amine solvent from flue gases in post-combustion technology. A complex flow system including a countercurrent two-phase flow in a porous region, chemical reaction and heat transfer is considered to resolve CO2 absorption. In order to approach the hydrodynamics of the process a two-fluid Eulerian model was applied. At the present stage of model development only the first part of the cycle, i.e. CO2 absorption was included. A series of parametric simulations has shown that carbon dioxide capture efficiency is mostly influenced by the ratio of liquid (aqueous amine solution) to gas (flue gases) mass fluxes. Good consistency of numerical results with experimental data acquired at a small-scale laboratory CO2 capture installation (at the Institute for Chemical Processing of Coal, Zabrze, Poland) has proved the reliability of the model.
Go to article

Abstract

Thermodynamic principles for the dissolution of gases in ionic liquids (ILs) and the COSMO-SAC model are presented. Extensive experimental data of Henry’s law constants for CO2, N2 and O2 in ionic liquids at temperatures of 280-363 K are compared with numerical predictions to evaluate the accuracy of the COSMO-SAC model. It is found that Henry’s law constants for CO2 are predicted with an average relative deviation of 13%. Both numerical predictions and experimental data reveal that the solubility of carbon dioxide in ILs increases with an increase in the molar mass of ionic liquids, and is visibly more affected by the anion than by the cation. The calculations also show that the highest solubilities are obtained for [Tf2N]ˉ. Thus, the model can be regarded as a useful tool for the screening of ILs that offer the most favourable CO2 solubilities. The predictions of the COSMOSAC model for N2 and O2 in ILs differ from the pertinent experimental data. In its present form the COSMO-SAC model is not suitable for the estimation of N2 and O2 solubilities in ionic liquids.
Go to article

This page uses 'cookies'. Learn more