Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.
Go to article

Abstract

In this stud y, we attempt to analyse free nonlinear vibrations of buckling in laminated composite beams. Two new methods are applied to obtain the analytical solution of the nonlinear governing equation of the problem. The effects of different parameters on the ratio of nonlinear to linear natural frequencies of the beams are studied. These methods give us an agreement with numerical results for the whole range of the oscillation amplitude.
Go to article

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.
Go to article

Abstract

In this study, free and forced vibration responses of carbon nanotube reinforced uniform and tapered composite beams are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced uniform and tapered composite beams are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available in literature. Various parametric studies are also performed to investigate the effect of aspect ratio, percentage of CNT content, ply orientation, and boundary conditions on natural frequencies and mode shapes of a CNT reinforced composite beam. It was observed that the addition of carbon nanotube in fiber reinforced polymer composite (FRP) beam enhances the stiffness of the structure which consequently increases the natural frequencies and alters the mode shapes.
Go to article

This page uses 'cookies'. Learn more