Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper researches the application of grey system theory in cost forecasting of the coal mine. The grey model (GM(1.1)) is widely used in forecasting in business and industrial systems with advantages of minimal data, a short time and little fluctuation. Also, the model fits exponentially with increasing data more precisely than other prediction techniques. However, the traditional GM(1.1) model suffers from the poor anti-interference ability. Aimed at the flaws of the conventional GM(1.1) model, this paper proposes a novel dynamic forecasting model with the theory of background value optimization and Fourier-series residual error correction based on the traditional GM(1.1) model. The new model applies the golden segmentation optimization method to optimize the background value and Fourier-series theory to extract periodic information in the grey forecasting model for correcting the residual error. In the proposed dynamic model, the newest data is gradually added while the oldest is removed from the original data sequence. To test the new model’s forecasting performance, it was applied to the prediction of unit costs in coal mining, and the results show that the prediction accuracy is improved compared with other grey forecasting models. The new model gives a MAPE & C value of 0.14% and 0.02, respectively, compared to 1.75% and 0.37 respectively for the traditional GM(1.1) model. Thus, the new GM(1.1) model proposed in this paper, with advantages of practical application and high accuracy, provides a new method for cost forecasting in coal mining, and then help decision makers to make more scientific decisions for the mining operation.
Go to article

Abstract

This paper addresses the issue of obtaining maximum likelihood estimates of parameters for structural VAR models with a mixture of distributions. Hence the problem does not have a closed form solution, numerical optimization procedures need to be used. A Monte Carlo experiment is designed to compare the performance of four maximization algorithms and two estimation strategies. It is shown that the EM algorithm outperforms the general maximization algorithms such as BFGS, NEWTON and BHHH. Moreover, simplification of the problem introduced in the two steps quasi ML method does not worsen small sample properties of the estimators and therefore may be recommended in the empirical analysis.
Go to article

Abstract

Qualitative and quantitative results of high terrain elevation effect on spectral radiance of optical satellite image which affect the accuracy in retrieving of land surface cover changes is given. The paper includes two main parts: correction model of spectral radiance of satellite image affected by high terrain elevation and assessment of impacts and variation of land cover changes before and after correcting influence of high terrain elevation to the spectral radiance of the image. Study has been carried out with SPOT 5 in Hoa Binh mountain area of two periods: 2007 and 2010. Results showed that appropriate correction model is the Meyer’s one. The impacts of correction spectral radiance to 7 classes of classified images fluctuate from 15% to 400%. The varying changes before and after correction of image radiation fluctuate over 7 classes from 5% to 100%.
Go to article

This page uses 'cookies'. Learn more