Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

CO2 emission from combustion fossil fuels is considered as the primary factor in the global warming. Different methods for separation CO2 from combustion flue gases are extensively used across the world. The aim of this study is to analyze the most important technological solutions of CO2 separation. For this reason chemical absorption, physical absorption, adsorption approach, membrane filtration and cryogenic process were researched. Concluding, selection of the right method for carbon dioxide capture separation is a complex issue and a range of technological and economic factors should be taken into consideration prior to application on the industrial scale.
Go to article

Abstract

This work depicts the effects of deep cryogenically treated high-speed steel on machining. In recent research, cryogenic treatment has been acknowledged for improving the life or performance of tool materials. Hence, tool materials such as the molybdenum-based high-speed tool steel are frequently used in the industry at present. Therefore, it is necessary to observe the tool performance in machining; the present research used medium carbon steel (AISI 1045) under dry turning based on the L9 orthogonal array. The effect of untreated and deep cryogenically treated tools on the turning of medium carbon steel is analyzed using the multi-input-multi-output fuzzy inference system with the Taguchi approach. The cutting speed, feed rate and depth of cut were the selected process parameters with an effect on surface roughness and the cutting tool edge temperature was also observed. The results reveal that surface roughness decreases and cutting tool edge temperature increases on increasing the cutting speed. This is followed by the feed rate and depth of cut. The deep cryogenically treated tool caused a reduction in surface roughness of about 11% while the cutting tool edge temperature reduction was about 23.76% higher than for an untreated tool. It was thus proved that the deep cryogenically treated tool achieved better performance on selected levels of the turning parameters.
Go to article

Abstract

The paper presents properties of HS6-5-2 high speed steel subjected to deep cryogenic treatment (DCT) and subsequent tempering at different temperatures. DCT process of HS6-5-2 steel leads to shifting of maximum hardness peak to the lower temperature and the reduction of the obtained maximum hardness by about 1 HRC. These changes in hardness may be due to the shifting of the stage of nucleation and growth of carbide phases to lower temperatures or the changes taking place in the matrix, connected with the additional transformation of the martensite proceeding during the isothermal martensitic transformation occurring at cryogenic temperatures and more extensively occurring precipitation processes, lowering the content of the carbon in the martensite, determining thereby its lower hardness.
Go to article

Abstract

In this paper the results of the thermodynamic analysis of the oxy-combustion type pulverized bed boiler integrated with a hybrid, membrane- cryogenic oxygen separation installation are presented. For the calculations a 600 MW boiler with live steam parameters at 31.1 MPa /654.9 oC and reheated steam at 6.15 MPa/672.4 oC was chosen. In this paper the hybrid membrane-cryogenic technology as oxygen production unit for pulverized bed boiler was proposed. Such an installation consists of a membrane module and two cryogenic distillation columns. Models of these installations were built in the Aspen software. The energy intensity of the oxygen production process in the hybrid system was compared with the cryogenic technology. The analysis of the influence of membrane surface area on the energy intensity of the process of air separation as well as the influence of oxygen concentration at the inlet to the cryogenic installation on the energy intensity of a hybrid unit was performed.
Go to article

Abstract

Aluminum alloys are widely used today in plastic injection molds in the automotive and aerospace industries due to their high strength and weight ratio, good corrosion and fatigue resistance as well as high feed rates. The 5754 aluminum alloy has high corrosion resistance and a structure suitable for cold forming. In this study, an AA 5754-H111 tempered aluminum alloy with the dimensions of 80×80×30 mm was used, and some of the materials were cryogenically heat treated. For the milling operations, ϕ12 mm diameter 76 mm height uncoated as well as TiCN and TiAlN coated end mills were used. Different levels of cutting depth (1.25, 2.0, 2.5 mm), cutting speed (50, 80, 100 m/ min), feed rate (265, 425, 530 m/ min) and machining pattern (concentric, back and forth and inward helical) were used. The number of experiments was reduced from 486 to 54 using the Taguchi L54 orthogonal array. The values obtained at the end of the experiments were evaluated using the signal-to-noise ratio, ANOVA, three-dimensional graphs and the regression method. Based on the result of the verification experiments, the processing accuracy for surface roughness was improved from 3.20 μm to 0.90 μm, with performance increase of 71.88%.
Go to article

Abstract

The paper examines from the thermodynamic point of view operation of coal fired power unit cooperating with the cryogenic oxygen unit, with a particular emphasis on the characteristic performance parameters of the oxygen unit. The relatively high purity technical oxygen produced in the oxygen unit is then used as the oxidant in the fluidized bed boiler of the modern coal fired power unit with electric power output of approximately 460 MW. The analyzed oxygen unit has a classical two-column structure with an expansion turbine (turboexpander), which allows the use of relatively low pressure initially compressed air. Multivariant calculations were performed, the main result being the loss of power and efficiency of the unit due to the need to ensure adequate driving power to the compressor system of the oxygen generating plant.
Go to article

Abstract

This article describes a thermodynamic analysis of an oxy type power plant. The analyzed power plant consists of: 1) steam turbine for supercritical steam parameters of 600 °C/29 MPa with a capacity of 600 MW; 2) circulating fluidized bed boiler, in which brown coal with high moisture content (42.5%) is burned in the atmosphere enriched in oxygen; 3) air separation unit (ASU); 4) CO2 capture installation, where flue gases obtained in the combustion process are compressed to the pressure of 150 MPa. The circulated fluidized bed (CFB) boiler is integrated with a fuel dryer and a cryogenic air separation unit. Waste nitrogen from ASU is heated in the boiler, and then is used as a coal drying medium. In this study, the thermal efficiency of the boiler, steam cycle thermal efficiency and power demand were determined. These quantities made possible to determine the net efficiency of the test power plant.
Go to article

Abstract

The paper presents the special software for transient FE analysis of coupled electromagnetic-thermal problems in a squirrel cage submerged motor working at cryogenic temperature. A time-stepping finite element method and transients analysis of an induction motor has been applied. The non-linearity of the magnetic circuit, the movement of the rotor, skewed slots, and the influence of temperature on electric and thermal properties of the materials has been taken into account. Developed on the basis of presented algorithm a computer program used to analyze the phenomenon of current displacement in the rotor bars of high-voltage cage induction motor working in cryogenic conditions. The results of the simulations are presented.
Go to article

Abstract

Deep cryogenic treatment (DCT) is gaining popularity as a treatment used to modify structures obtained during heat or thermo-chemical treatment. The article presents the influence of DCT, carried out during heat treatment before and after gas nitriding processes, on the formation of gas nitrided layers on X153CrMoV12 steel. It was found that the use of DCT between quenching and tempering performed prior to gas nitriding processes, increases the hardness, thickness and wear resistance of the nitrided layers. At the same time, if we apply cryogenic treatment during post-heat treatment of nitrided layers, we also get very high wear resistance and increased thickness of nitrided layers, in comparison with conventional gas nitriding of X153CrMoV12 steel. In this case, DCT significantly increases also the hardness of the core by the transformation of retained austenite and the precipitation of fine carbides of alloying elements.
Go to article

This page uses 'cookies'. Learn more