Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper presents a theoretical analysis of the effect of electric car performance characteristics on vehicle energy consumption and driving range. The test object was a Nissan Leaf electric vehicle. The characteristic curves of basic and additional resistance to motion (sum of rolling resistance and air resistance and inertia resistance or grade resistance, respectively) were applied to the model characteristic curve of electric motor torque of the tested vehicle. Based on that, the graphs describing the relationships between vehicle energy consumption and vehicle speed were made (for specific values of car acceleration / acclivity grade) as well as the relations between vehicle driving range and its traction properties. It was concluded that the use of performance characteristics significantly increased the vehicle’s energy consumption and decreased the available vehicle’s driving range.
Go to article

Abstract

Higher active power of a submerged arc furnace is commonly believed to increase its capacity in the process of ferrosilicon smelting. This is a true statement but only to a limited extent. For a given electrode diameter d, there is a certain limit value of the submerged arc furnace active power. When this value is exceeded, the furnace capacity in the process of ferrosilicon smelting does not increase but the energy loss is higher and the technical and economic indicators become worse. Maximum output regarding the reaction zone volumes is one of parameters that characterize similarities of furnaces with various geometrical parameters. It is proportional to d3 and does not depend on the furnace size. The results of statistical analysis of the ferrosilicon smelting process in the 20 MVA furnace have been presented. In addition to basic electrical parameters, such as active power and electrical load of the electrodes, factors contributing to higher resistance of the furnace bath and resulting lower reactive power Px demonstrate the most significant effect on the electrothermal process of ferrosilicon smelting. These parameters reflect metallurgical conditions of ferrosilicon smelting, such as the reducer fraction, position of the electrodes and temperature conditions of the reaction zones.
Go to article

This page uses 'cookies'. Learn more