Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper deals with the preparation and measurement of an experimental polymer graphite cathode that seems to be a promising and cheap source of electrons utilizing cold field-emission in high- and ultra-high vacuum. Polymer graphite seems to be a proper material as it contains a large amount of hybridized carbon with a low degree of surface oxidation and silicon monoxide (SiO). Within the frame of this work, a special experimental method of tip preparation has been designed and tuned. This method is based on ion milling inside a dual-beam electron microscope enabling to obtain ultra-sharp tips of a diameter smaller than 100 nm with a predefined opening angle. The charge transport within experimental samples is evaluated based on results provided by the noise spectroscopy of the total emission current in the time and frequency domains.
Go to article

Abstract

Noise diagnostics has been performed on the cold field-emission cathode in high-vacuum. The tested cold field-emission cathode, based on tungsten wire with ultra-sharp tip coated by epoxy was designed to meet the requirements of transmission electron microscopy, which uses a small and stable source of electrons. Current fluctuations are reduced by improving the structure and fabrication technology. Noise was measured both in time and frequency domains, which gives information about current fluctuations and also about charge transport. Mutual correlation between the noise spectral density, extractor voltage and beam brightness was analyzed.
Go to article

Abstract

The techniques of micro and nano structurization of surfaces of various materials are utilized in electronics and medicine. Such procedure as wet and dry etching allows to fabricate protruded or recessed micro and nanostructures on the surface. In the paper some examples of utilization of a surface structurization, known from literature, are described. Some structurization methods and experimental results for fabrication of the arrays of sharp microtips are presented. Wet and/or dry etching, and thermal oxidation process were used to form the arrays of sharp gated and non-gated, protruded or recessed silicon microtips on silicon wafer. For the first time, the arrays of silicon carbide (SiC) microtips on glass wafer have been produced by use of the transfer mold technique. Arrays of sharp microtips are used as field electron emission cathodes for vacuum microelectronics devices. Some electron emission measurements for these cathodes have been carried out. New application of silicon microtips array in biochemistry has been tested with satisfactory results.
Go to article

This page uses 'cookies'. Learn more