## Search results

### Search results

Number of results: 5
items per page: 25 50 75
Sort by:

## Analysis of linear continuous-time systems by the use of the conformable fractional calculus and Caputo

### Abstract

The paper presents general solutions for fractional state-space equations. The analysis of the fractional electrical circuit in the transient state is described by the equation of the state and space equations. The results are presented for the voltage of a capacitor and current in a coil, for different alpha values. The Caputo and conformable fractional derivative definitions have been considered. At the end, the results have been obtained.
Go to article

## Voltage modelling in ignition coil using magnetic coupling of fractional order

### Abstract

The paper discusses the modelling of magnetic coupling in ignition coils by fractional differential equations. The use of fractional-order coupling allows us to consider the losses caused by the non-linearity of the ferromagnetic core of the ignition coil and obtain the waveform of the ignition coil’s secondary voltage closest to the values obtained experimentally.
Go to article

## Analysis of fractional electrical circuit with rectangular input signal using Caputo and conformable derivative definitions

### Abstract

An analysis of a given electrical circuit using a fractional derivative. The statespace equation was developed. The dynamics of tensions described by Kirchhoff’s laws equations. The paper used the definition of the integral derivative Caputo and CDF conformable fractional definition. An electrical circuit solution using Caputo and CDF defini- tions for rectangular with zero initial conditions was developed. The results obtained using the Caputo and CDF definitions were compared. The solutions are shown for capacitor voltages, for fractional derivative orders of 0.6, 0.8, 1. The results were compared using graphs.
Go to article

## Synchronization of fractional order Rabinovich-Fabrikant systems using sliding mode control techniques

### Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article