Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents a vibration analysis of a multi-link surgical micromanipulator joint, based on its detailed mathematical model. The manipulator’s prototype contains 6 links with the diameter of 8-10 [mm] and with the length of the modules of about 130 [mm]. It is driven by brushless servomotors with worm and planetary gears, for which the total transmission ratio is above 1/10000. Regarding the low efficiency of micro-robot drive systems and its vibrations, a reliable joint model and its performance is crucial for the development of a high-precision control system. To achieve the required accuracy, modelling framework has been enriched with an advanced model of friction. Simulation results are presented and discussed.
Go to article

Abstract

The paper presents a model for dynamic analysis of belt transmission. A two dimensional discrete model was assumed of a belt consisting of rigid bodies joined by translational and torsion spring-damping elements. In the model, both a contact model and a dry friction model including creep were taken into consideration for belt-pulley interaction. A model with stiffness and damping between the contacting surfaces was used to describe the contact phenomenon, whereas a simplified model of friction was assumed. Motion of the transmission is triggered under the influence of torque loads applied on the pulleys. Equations of motion of separate elements of the belt and pulleys were solved numerically by using adaptive stepsize integration methods. Calculation results are presented of the reaction forces acting on the belt as well as contact and friction forces between the belt body and pulley in the sample of the belt transmission. These were obtained under the influence of the assumed drive and resistance torques.
Go to article

Abstract

This paper presents the construction of adequate 3-D computer models for simulation research and analysis of dynamic aspects of caliper disc brakes, as well as of drum brakes, actuated by a short stroke electromagnet or a hydraulic thruster, when these brake types are used in the hoisting mechanism of cranes. The adequacy of the 3-D models has been confirmed by comparing their simulation results with results from an experiment and from classic computational models. The classic computational models, related to the study of main dynamic features of friction brakes, are layouts that are based on a number of assumptions, such as that the braking force instantly reaches its steady-state value, the clearance between the friction lining and the disc/drum is neglected, etc. These assumptions lead to a limitation of research options. The proposed 3-D computer models improve the research layouts by eliminating a number of the classic model assumptions. The improvements are related to the determination of the braking time, braking torque, normal force and other dynamic aspects of the brakes by performing simulations that take into account: the braking force as a function of time, the presence of clearance between the friction lining and the disc/drum, etc.
Go to article

This page uses 'cookies'. Learn more