Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

A gear system transmits power by means of meshing gear teeth and is conceptually simple and effective in power transmission. Thus typical applications include electric utilities, ships, helicopters, and many other industrial applications. Monitoring the condition of large gearboxes in industries has attracted increasing interest in the recent years owing to the need for decreasing the downtime on production machinery and for reducing the extent of secondary damage caused by failures. This paper addresses the development of a condition monitoring procedure for a gear transmission system using artificial neural networks (ANNs) and support vector machines (SVMs). Seven conditions of the gear were investigated: healthy gear and gear with six stages of depthwise wear simulated on the gear tooth. The features extracted from the measured vibration and sound signals were mean, root mean square (rms), variance, skewness, and kurtosis, which are known to be sensitive to different degrees of faults in rotating machine elements. These characteristics were used as an input features to ANN and SVM. The results show that the multilayer feed forward neural network and multiclass support vector machines can be effectively used in the diagnosis of various gear faults.
Go to article

Abstract

This paper describes the development phases of a numerical-experimental integrated approach aimed at obtaining sufficiently accurate predictions of the noise field emitted by an external gear pump by means of some vibration measurements on its external casing. Harmonic response methods and vibroacoustic analyses were considered as the main tools of this methodology. FFT acceleration spectra were experimentally acquired only in some positions of a 8.5 cc/rev external gear pump casing for some working conditions and considered as external excitation boundary conditions for a FE quite simplified vibroacoustic model. The emitted noise field was computed considering the pump as a ‘black box’, without taking into account the complex dynamics of the gear tooth meshing process and the consequent fluid pressure and load distribution. Sound power tests, based on sound intensity measurements, as well as sound pressure measurements in some positions around the pump casing were performed for validation purposes. The comparisons between numerical and experimental results confirmed the potentiality of this approach in offering a good compromise between noise prediction accuracy and reduction of experimental and modelling requirements.
Go to article

Abstract

The paper shows the new method for noise reduction in external gear pumps based on the analysis of the pressure in inter teeth volumes. The simulation model and measurement results of pressure changes in the inter teeth volume has been presented. Based on simulation results an additional volume has been obtained, which is connected to the inter teeth volume (decompression filter volume). Due this additional volume the build down processes in the pump are longer and the pressure overdue in the inter teeth volumes are smaller. This leads to the reduction of the dynamical excitation forces inside the pump and noise, especially in the higher frequency rangeI.
Go to article

Abstract

Recent developments in automation and technology have revolutionized the way products are made. It is directly seen in the evolution of part miniaturization in the sectors such as aerospace, electronics, biomedicine and medical implants. Micromachining is a promising technology to fulfill the need of miniaturization. A review has been done on the micromachining processes such as micro electric discharge machining (micro-EDM) and wire EDM (WEDM), micro electrochemical machining (micro-ECM). Recent literature were studied and categorized in terms of materials, process parameters, performances, product manufactured, and miniature product generation. Starting with brief introduction to micromachining, classifications and applications, technical aspects of discussions from the literature have been presented on key factors such as parameters and the response variables. Important aspects of recast layer, heat effected zone, micro-hardness, micro cracks, residual stress, etc., have been given. A special focus is given to the status of the research on microgear manufacturing. Comparison has been made between other conventional process suitable for micro-gear manufacturing and WEDM. The miniature gear machined by WEDM shows the defect-free microstructure, better surface finish, thin recast layer and improved gear quality parameters such as profile and pitch. Finally, the research gaps and future research directions have been presented.
Go to article

Abstract

In the paper, a solution to the problem of elastic deformation of thin-walled shell structures with complex shapes within the theory of geometrically non-linear shells has been presented. It is a modification of the Newton-Raphson method. In a variational formulation, the problem is based on a Lagrange’s functional for increments of displacements. The method has been applied to investigations of a harmonic drive, in particular to analysis of the stress state in the flexspline with a variable curvature as well as bearings of the generator. For verification of the obtained results, a more adequate FEM model calculated by ANSYS has been used.
Go to article

Abstract

The aim of this article is to present the design procedure for determining modification coefficients of toothed wheels of involutes planetary gear train with internal conjunction of teeth. It is possible to obtain a higher load-carrying capacity which depends also on correction coefficients. For example, we take into consideration a concept of planetary gears in which the teeth can be corrected, which allows better fatigue and contact surface strength. Two cases are considered when the namely zero center distance (without corrections) of the central and satellite wheels is the same or not, in relation to the zero center distance between the satellite and the sun wheel. Geometrical dimensions are described with regard to the technological teeth correction scope, and inequality restriction conditions are determined with respect to the ISO standards recommendations and the literature. The procedure can be applied to any other planetary gears with another kinematic connection of wheels.
Go to article

Abstract

The process of designing control systems for devices operating in microgravity, on-orbit environment, requires testing to verify the effectiveness and characteristics of the algorithms. The key issue is to design a relevant environment in terrestrial conditions that affects both the linear and angular three-dimensional motion of a rigid body. This paper contains a description of the mechanical aspects of two test beds used to evaluate control algorithms planned for use in a space manipulator. Two solutions are presented: (i) a planar manipulator with a free base placed on an air-bearing table; and (ii) a test bed with a 7-DOF manipulator fixed through a force-torque measurement system to the base.
Go to article

Abstract

Magnetic-geared permanent magnet (MGPM) electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA). The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.
Go to article

This page uses 'cookies'. Learn more