Search results

Filters

  • Journals
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper describes the influence of graphite shape, size and amount to electrical properties of different cast irons. Experiments of electrical resistivity measurements were conducted during solidification of four different melts in different time intervals from melt treatment by inoculation and nodularization. Metallographic analyses were made in order to determine the shape, size, distribution and amount of graphite and correlate results with electrical resistivity measurements. It was found out that nodular graphite is giving the lowest electrical resistivity and is decreased during solidification. Electrical resistivity of lamellar cast iron is increased during solidification since lamellas interrupt metal matrix severely There is no significant difference in resistivity of vermicular cast iron from nodular cast iron. Smaller size of graphite and lower amount of graphite and higher amount of metal matrix also decrease resistivity.
Go to article

Abstract

The graphite form in cast iron is the structure parameter deciding on its all physical and mechanical properties. Three basic forms of graphite: flake, vermicular (compact) and nodular (spheroidal) are singled out in standard cast iron grades, without a heat treatment. Standards of individual grades of cast iron the most often allow only the homogeneous graphite form, sometimes with addition of 5÷10% of the other form. The interesting and - in the authors opinion - future-oriented material can constitute cast iron in which various forms of graphite are present, e.g. in comparative amounts: spherical and vermicular cast irons. Cast iron within which graphite occurs in two or three forms was named „Vari-Morph” (VM) cast iron, i.e. the one in which spherical and vermicular or vermicular and flake graphite occur in a wide range of proportions. The results of investigations of these new cast iron grades and their properties are presented in the hereby paper.
Go to article

Abstract

Increasing demands on the utility properties of materials used for castings have led to the production of cast iron with a modified shape of graphite, where the required properties are achieved by a change in graphite shape, its size and layout, and a change in the basic structure of the metal. This paper is focused on the continuous method of producing spheroidal graphite FLOTRET. In the introductory section is summarized the theoretical foundations of the secondary treatment of cast irons, especially the FLOTRET flow method, describes the advantages and disadvantages of the method. The practical part is divided into laboratory and operational tests. Laboratory experiments were conducted on a laboratory-type modifier FLOTRET chamber, which was designed and hydraulically optimized. Experiments were focused on the effects of pressure altitude and amount of modifier on the residual values of magnesium, as conditions for a successful modification. The method was tested in two foundries under operating conditions and in one of them was observed a long-term modification process.
Go to article

This page uses 'cookies'. Learn more