Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In this study the potential usefulness of infrared thermography (IRT) as a non-invasive tool to rapidly screen the most common non-infectious foot lesions in dairy cows was evaluated. Thirty-eight healthy cows and 38 cows affected by foot diseases were enrolled. Diseased cows showed the following disorders at lateral and medial claw in the hind foot: white line lesion, sole ulcer, sole haemorrhage, horizontal fissure, axial fissure. Thermography images of hind foot were collected for each animal using a digital infrared camera. Foot temperature was measured in four regions: central area of the hind foot (A1), interdigital area of the hind foot (A2), lateral (A3) and medial (A4) claw in the hind foot. Higher temperature values in the regions A1 and A2 compared to A3 and A4 were found in both healthy and diseased cows (p0.001). Cows affected by foot diseases showed higher foot temperature values compared to healthy cows (p0.05) in all considered regions. This study highlights the potential application of IRT as a reliable, practical tool for detection of hoof lesions in dairy cows. Multiple scanning images and comparisons between affected and healthy anatomical structures could be useful in defining the consistency of abnormality.
Przejdź do artykułu

Abstrakt

Y2O3-MgO nanocomposites are one of the most promising materials for hypersonic infrared windows and domes due to their excellent optical transmittance and mechanical properties. In this study, influence of the calcination temperature of Y2O3-MgO nanopowders on the microstructure, IR transmittance, and hardness of Y2O3-MgO nanocomposites was investigated. It was found that the calcination temperature is related to the presence of residual intergranular pores and grain size after spark plasma sintering. The nanopowders calcined at 1000°C exhibits the highest infrared transmittance (82.3% at 5.3 μm) and hardness (9.99 GPa). These findings indicated that initial particle size and distribution of the nanopowders are important factors determining the optical and mechanical performances of Y2O3-MgO nanocomposites.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji