Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

Inverse boundary problem for cylindrical geometry and unsteady heat conduction equation was solved in this paper. This solution was presented in a convolution form. Integration of the convolution was made assuming the distribution of temperature T on the integration interval (ti, ti+ Δt) in the form T (x, t) = T (x, ti) Θ + T (z, ti+ Δt) (1 - Θ), where Θ ϵ (0,1). The influence of value of the parameter Θ on the sensitivity of the solution to the inverse problem was analysed. The sensitivity of the solution was examined using the SVD decomposition of the matrix A of the inverse problem and by analysing its singular values. An influence of the thermocouple installation error and stochastic error of temperature measurement as well as the parameter Θ on the error of temperature distribution on the edge of the cylinder was examined.
Go to article

Abstract

The tubular type instrument (flux tube) was developed to identify boundary conditions in water wall tubes of steam boilers. The meter is constructed from a short length of eccentric tube containing four thermocouples on the fire side below the inner and outer surfaces of the tube. The fifth thermocouple is located at the rear of the tube on the casing side of the water-wall tube. The boundary conditions on the outer and inner surfaces of the water flux-tube are determined based on temperature measurements at the interior locations. Four K-type sheathed thermocouples of 1 mm in diameter, are inserted into holes, which are parallel to the tube axis. The non-linear least squares problem is solved numerically using the Levenberg-Marquardt method. The heat transfer conditions in adjacent boiler tubes have no impact on the temperature distribution in the flux tubes.
Go to article

Abstract

The article presents the prototype of a measurement system with a hot probe, designed for testing thermal parameters of heat insulation materials. The idea is to determine parameters of thermal insulation materials using a hot probe with an auxiliary thermometer and a trained artificial neural network. The network is trained on data extracted from a nonstationary two-dimensional model of heat conduction inside a sample of material with the hot probe and the auxiliary thermometer. The significant heat capacity of the probe handle is taken into account in the model. The finite element method (FEM) is applied to solve the system of partial differential equations describing the model. An artificial neural network (ANN) is used to estimate coefficients of the inverse heat conduction problem for a solid. The network determines values of the effective thermal conductivity and effective thermal diffusivity on the basis of temperature responses of the hot probe and the auxiliary thermometer. All calculations, like FEM, training and testing processes, were conducted in the MATLAB environment. Experimental results are also presented. The proposed measurement system for parameter testing is suitable for temporary measurements in a building site or factory.
Go to article

Abstract

The paper presents investigations related to solving of a direct and inverse problem of a non-stationary heat conduction equation for a cylinder. The solution of the inverse problem in the form of temperature distributions has been obtained through minimization of a functional being the measure of the difference between the values of measured and calculated temperatures in M points of the heated cylinder. The solution of the conduction equation was presented in the convolutional form and then numerically integrated approximating one of the integrand with a step function described with parameter Θ ∈ (0, 1]. The influence of the integration parameter Θ on the obtained solution of the inverse problem (including a number of temperature measurement points inside the heated body) has been analyzed. The influence of the parameter Θ on the sensitivity of the obtained temperature distributions has been investigated.
Go to article

Abstract

The aim of this paper is analysis of the possibility of determining the internal structure of the fibrous composite material by estimating its thermal diffusivity. A thermal diffusivity of the composite material was determined by applying inverse heat conduction method and measurement data. The idea of the proposed method depends on measuring the timedependent temperature distribution at selected points of the sample and identification of the thermal diffusivity by solving a transient inverse heat conduction problem. The investigated system which was used for the identification of thermal parameters consists of two cylindrical samples, in which transient temperature field is forced by the electric heater located between them. The temperature response of the system is measured in the chosen point of sample. One dimensional discrete mathematical model of the transient heat conduction within the investigated sample has been formulated based on the control volume method. The optimal dynamic filtration method as solution of the inverse problem has been applied to identify unknown diffusivity of multi-layered fibrous composite material. Next using this thermal diffusivity of the composite material its internal structure was determined. The chosen results have been presented in the paper.
Go to article

Abstract

A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.
Go to article

Abstract

A method for determining time-optimum medium temperature changes is presented. The heating of the pressure elements will be conducted so that the circumferential stress caused by pressure and fluid temperature variations at the edge of the opening at the point of stress concentration, do not exceed the allowable value. In contrast to present standards, two points at the edge of the opening are taken into consideration. The first point, P1, is located at the cross section and the second, P2, at the longitudinal section of the vessel. It will be shown that the optimum temperature courses should be determined with respect to the total circumferential stress at the point P2, and not, as in the existing standards due to the stress at the point P1. Optimum fluid temperature changes are assumed in the form of simple time functions. For practical reasons the optimum temperature in the ramp form is preferred. It is possible to increase the fluid temperature stepwise at the beginning of the heating process and then increase the fluid temperature with the constant rate. Allowing stepwise fluid temperature increase at the beginning of heating ensures that the heating time of a thick-walled component is shorter than heating time resulting from the calculations according to EN 12952-3 European Standard.
Go to article

This page uses 'cookies'. Learn more