Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In the last few years, a great attention was paid to the deep learning Techniques used for image analysis because of their ability to use machine learning techniques to transform input data into high level presentation. For the sake of accurate diagnosis, the medical field has a steadily growing interest in such technology especially in the diagnosis of melanoma. These deep learning networks work through making coarse segmentation, conventional filters and pooling layers. However, this segmentation of the skin lesions results in image of lower resolution than the original skin image. In this paper, we present deep learning based approaches to solve the problems in skin lesion analysis using a dermoscopic image containing skin tumor. The proposed models are trained and evaluated on standard benchmark datasets from the International Skin Imaging Collaboration (ISIC) 2018 Challenge. The proposed method achieves an accuracy of 96.67% for the validation set .The experimental tests carried out on a clinical dataset show that the classification performance using deep learning-based features performs better than the state-of-the-art techniques.
Go to article

Abstract

Malignant melanomas are the most deadly type of skin cancer, yet detected early have high chances of successful treatment. In the last twenty years, the interest in automatic recognition and classification of melanoma dynamically increased, partly because of appearing public datasets with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven sizes of datasets, huge intra-class variation with small interclass variation, and the existence of many artifacts in the images. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in the form of hand-crafted features. Automatic determination of the skin features with the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of pre-processing the images. The proposed system is an ensemble of ten neural networks working in parallel, and one network using their results to generate a final decision. This system structure enables to increase the efficiency of its operation by several percentage points compared with a single neural network. The proposed system is trained on over 5000 and tested afterwards on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making.
Go to article

This page uses 'cookies'. Learn more