Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 107
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Metallic bearing alloys have different types, most of which are tin (Babbitt) or bronze based. Bronze bearings are used at heavy duty conditions. The goal of this research is an investigation on the effect of cooling rate and pouring temperature (two important factors in casting production) on the Brinell hardness and pin-on-disc wear resistance (two important properties in bearing applications) of bronze SAE660. The melt had prepared by induction furnace. Then, it had poured in sand mold in four different casting conditions, including pouring temperatures of 950 oC and 1200 oC, and cooling with water and air. Finally, the microstructure, hardness and wear resistance of the SAE660 had investigated. The results indicated that if the maximum hardness, along with the minimum weight loss due to wear (or maximum wear resistance) is required; the contents of intermetallic compounds, lead phase and the solid solution phase should be more. In this way, the samples which are cooled in air and poured at 950 oC have the high hardness and the lowest weight loss.
Przejdź do artykułu

Abstrakt

This paper presents the results of studies of high-alloyed white cast iron modified with lanthanum, titanium, and aluminium-strontium. The samples were taken from four melts of high-vanadium cast iron with constant carbon and vanadium content and near-eutectic microstructure into which the tested inoculants were introduced in an amount of 1 wt% respective of the charge weight. The study included a metallographic examinations, mechanical testing, as well as hardness and impact resistance measurements taken on the obtained alloys. Studies have shown that different additives affect both the microstructure and mechanical properties of high-vanadium cast iron.
Przejdź do artykułu

Abstrakt

The multiple direct remelting of composites based on the A359 alloy reinforced with 20% of Al2O3 particles was performed. The results of both gravity casting and squeeze casting were examined in terms of the obtained microstructure and mechanical characteristics. In microstructure examinations, the combinatorial method based on phase quanta theory was used. In mechanical tests, the modified low cycle fatigue method (MLCF) was applied. The effects obtained after both gravity casting and squeeze casting were compared. It was noted that both characteristics were gradually deteriorating up to the tenth remelting. The main cause was the occurrence of shrinkage porosity after the gravity casting. Much better results were obtained applying the squeeze casting process. The results of microstructure examinations and fatigue tests enabled drawing the conclusion that the A359 alloy reinforced with Al2O3 particles can confer a much better fatigue life behavior to the resulting composite than the A359 alloy without the reinforcement. At the same time, comparing these results with the results of the previous own research carried out on the composites based also on the A359 alloy but reinforced in the whole volume with SiC particles, it has been concluded that both types of the composites can be subjected to multiple remelting without any significant deterioration of the structural and mechanical characteristics. The concepts and advantages of using the combinatorial and MLCF methods in materials research were also presented
Przejdź do artykułu

Abstrakt

Ultrasonic pulse echo technique was used to study cupric oxide (CuO) thin films. CuO thin films were prepared using sol gel technique. They were doped with Lithium (Li) (1%, 2% and 4%). Thin films’ thickness (d) and band gap energy (Eg) were measured. In addition, elastic moduli (longitudinal (L), shear (G), bulk (K) and Young’s (E)) and Poisson’s ratio (v) were determined to estimate the microstructure properties of the prepared films. The study ameliorated the used transducers to overcome their dead zone and beam scattering; wedges were developed. The results showed the effectiveness of these wedges. They enhanced transducers’ sensitivity by changing the dead zone, beam diameter, beam directivity and waves’ transmission. Also, the study noted that Li doping caused the improvement of CuO thin films to be more useful in solar cell fabrication. Li-CuO thin films had narrower band gap. Thus, they acquired a high quantum yield for the excited carriers; also they gained more efficiency to absorb solar light.
Przejdź do artykułu

Abstrakt

This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength) and grain size are shifting with an increasing cooling rate.
Przejdź do artykułu

Abstrakt

Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000o C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds. Characteristic of the filters’ properties before and after the filtration trial were done. It was found, that the surface reaction of the filter walls with molten metal, which resulted in local changes of the microstructure and phase composition, did not affect on expected filter lifetime and filtration did not cause secondary contamination of cast steel.
Przejdź do artykułu

Abstrakt

In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI). The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM). Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.
Przejdź do artykułu

Abstrakt

The results of structure and mechanical properties investigations of tungsten heavy alloy (THA) after cyclic sintering are presented. The material for study was prepared using liquid phase sintering of mixed and compacted powders in hydrogen atmosphere. The specimens in shape of rods were subjected to different number of sintering cycles according to the heating schemes given in the main part of the paper From the specimens the samples for mechanical testing and structure investigations were prepared. It follows from the results of the mechanical studies, that increasing of sintering cycles lead to decrease of tensile strength and elongation of THA with either small or no influence on yield strength. In opposite to that, the microstructure observations showed that the size of tungsten grain increases with number of sintering cycles. Moreover, scanning electron microscope (SEM) observations revealed distinctly more trans-granular cleavage mode of fracture in specimens subjected to large number of sintering cycles compared with that after one or two cycles only.
Przejdź do artykułu

Abstrakt

Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/ min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Przejdź do artykułu

Abstrakt

High-tin bronzes are used for church bells and concert bells (carillons). Therefore, beside their decorative value, they should also offer other functional properties, including their permanence and good quality of sound. The latter is highly influenced by the structure of bell material, i.e. mostly by the presence of internal porosity which interferes with vibration of the bell waist and rim, and therefore should be eliminated. The presented investigations concerning the influence of tin content ranging from 20 to 24 wt% on mechanical properties of high-tin bronzes allowed to prove the increase in hardness of these alloys with simultaneous decrease in the tensile and the impact strengths (Rm and KV, respectively) for the increased tin content. Fractures of examined specimens, their porosity and microstructures were also assessed to explain the observed regularities. A reason of the change in the values of mechanical properties was revealed to be the change in the shape of α-phase crystals from dendritic to acicular one, and generation of grain structure related to the increased Sn content in the alloy.
Przejdź do artykułu

Abstrakt

In Poland, researchers have a very strong interest in archaeometallurgy, which, as presented in classical works, focuses on dating artefacts from the prehistoric and early medieval periods in the form of cast iron and copper castings. This study, extending the current knowledge, presents the results of a microstructure investigation into the findings from the Modern era dating back to the late Middle Ages. The investigated material was an object in the form of a heavy solid copper block weighing several kilograms that was excavated by a team of Polish archaeologists working under the direction of Ms Iwona Młodkowska-Przepiórowska during works on the marketplace in the city of Czestochowa during the summer of 2009. Pre-dating of the material indicates the period of the seventeenth century AD. The solid copper block was delivered in the form of a part shaped like a bell, named later in this work as a “kettlebell”. To determine the microstructure, the structural components, chemical composition, and homogeneity, as well as additives and impurities, investigations were carried out using light microscopy, scanning electron microscopy including analysis of the chemical composition performed in micro-areas, and qualitative X-ray phase analysis in order to investigate the phase composition. Interpretation of the analytical results of the material’s microstructure will also help modify and/or develop new methodological assumptions to investigate further archaeometallurgical exhibits, throwing new light on and expanding the area of knowledge of the use and processing of seventeenth-century metallic materials.
Przejdź do artykułu

Abstrakt

The study includes the results of research conducted on selected lead-free binary solder alloys designed for operation at high temperatures. The results of qualitative and quantitative metallographic examinations of SnZn alloys with various Zn content are presented. The quantitative microstructure analysis was carried out using a combinatorial method based on phase quanta theory, per which any microstructure can be treated as an array of elements disposed in the matrix material. Fatigue tests were also performed using the capabilities of a modified version of the LCF method hereinafter referred to in short as MLCF, which is particularly useful in the estimation of mechanical parameters when there are difficulties in obtaining many samples normally required for the LCF test. The fatigue life of alloys was analyzed in the context of their microstructure. It has been shown that the mechanical properties are improved with the Zn content increasing in the alloy. However, the best properties were obtained in the alloy with a chemical composition close to the eutectic system, when the Zn-rich precipitates showed the most preferred morphological characteristics. At higher content of Zn, a strong structural notch was formed in the alloy because of the formation in the microstructure of a large amount of the needle-like Zn-rich precipitates deteriorating the mechanical characteristics. Thus, the results obtained during previous own studies, which in the field of mechanical testing were based on static tensile test only, have been confirmed. It is interesting to note that during fatigue testing, both significant strengthening and weakening of the examined material can be expected. The results of fatigue tests performed on SnZn alloys have proved that in this case the material was softened.
Przejdź do artykułu

Abstrakt

Lead-free alloys containing various amounts of zinc (4.5%, 9%, 13%) and constant copper addition (1%) were discussed. The results of microstructure examinations carried out by light microscopy (qualitative and quantitative) and by SEM were presented. In the light microscopy, a combinatorial method was used for the quantitative evaluation of microstructure. In general, this method is based on the phase quanta theory according to which every microstructure can be treated as an arrangement of phases/structural components in the matrix material. Based on this method, selected geometrical parameters of the alloy microstructure were determined. SEM examinations were based on chemical analyses carried out in microregions by EDS technique. The aim of the analyses was to identify the intermetallic phases/compounds occurring in the examined alloys. In fatigue testing, a modified low cycle fatigue test method (MLCF) was used. Its undeniable advantage is the fact that each time, using one sample only, several mechanical parameters can be estimated. As a result of structure examinations, the effect of alloying elements on the formation of intermetallic phases and compounds identified in the examined lead-free alloys was determined. In turn, the results of mechanical tests showed the effect of intermetallic phases identified in the examined alloys on their fatigue life. Some concepts and advantages of the use of the combinatorial and MLCF methods in materials research were also presented.
Przejdź do artykułu

Abstrakt

The paper describes the studies of ternary SnZn9Al1.5 lead-free alloy from the viewpoint of its mechanical behavior as well as microstructure examined by the light and scanning electron microscopy. The authors focused their attention specifically on the fatigue parameters determined by the original modified low-cycle fatigue method (MLCF), which in a quick and economically justified way allows determination of a number of mechanical parameters based on the measurement data coming from one test sample only. The effect of the addition of 1.5% Al to the binary eutectic SnZn9 alloy on its microstructure and the obtained level of mechanical parameters was analyzed. The phases and intermetallic compounds occurring in the alloy were identified based on the chemical analysis carried out in micro-areas by the SEM/EDS technique. It was shown that the addition of 1.5% Al to the binary eutectic SnZn9 alloy resulted in a more favorable microstructure and consequently had a positive effect on the mechanical parameters of the alloy. Based on the conducted research, it was recommended to use a combinatorial method based on the phase quanta theory to quickly evaluate the microstructure and the original MLCF method to determine a number of mechanical parameters.
Przejdź do artykułu

Abstrakt

The article describes the impact of germanium on the course of surface phenomena in casting alloys of silver used in gold smithing. The aim of this works is to describe the assessment of resulting alloys, comparing the area of raw castings and the impact of the addition content of the alloy on the hardness of the samples. The evaluation also was subject to corrosion resistance of giving a comparison of their use in relations to traditional silver alloys.
Przejdź do artykułu

Abstrakt

The present paper is a presentation of results of a study on morphology, chemical composition, material properties (HVIT, HIT, EIT), and nanoindentation elastic and plastic work for carbide precipitates in chromium cast iron containing 24% Cr. It has been found that the carbides differ in chemical composition, as well as in morphology and values characterizing their material properties. The carbides containing the most chromium which had the shape of thick and long needles were characterized with highest values of the analyzed material properties.
Przejdź do artykułu

Abstrakt

The article presents the study results of Sn-Zn lead-free solders with the various Zn content. The results concern the hypoeutectic, eutectic and hypereutectic alloys containing respectively 4.5% Zn, 9% Zn and 13.5% Zn. Moreover, these alloys contain the constant Ag (1%) addition. The aim of the study was to determine the microstructural conditionings of their fatigue life. In particular it was focused on answer the question what meaning can be assigned to the Ag addition in the chemical composition of binary Sn-Zn alloys. The research includes a qualitative and quantitative assessments of the alloy microstructures, that have been carried out in the field of light microscopy (LM). In order to determine some geometrical parameters of the microstructure of alloys the combinatorial method based on the phase quanta theory was applied. Moreover, for the identification necessities the chemical analyses in the micro-areas by SEM/EDS technics were also performed. Based on the SEM/EDS results the phases and intermetallic compounds existing in the examined lead-free solders were identified. The mechanical characteristics were determined by means of the modified low cycle test (MLCF). Based on this method and on the results obtained every time from only one sample the dozen of essential mechanical parameters were evaluated. The research results were the basis of analyzes concerning the effects of microstructural geometrical parameters of lead-free alloys studied on their fatigue life at ambient temperature.
Przejdź do artykułu

Abstrakt

Characteristics of the microstructure of corrosion-resistant cast 24Cr-5Ni-2.5Mo duplex steel after introduction of 0.98, 1.67 and 4.3% Si were described. Based on the test results it has been found that silicon addition introduced to the corrosion-resistant cast two-phase duplex steel significantly reduces austenite content in the alloy matrix. Increasing silicon content in the test alloy to 4.3% has resulted, in addition to the elimination of austenite, also in the precipitation of Si-containing intermetallic phases at the grain boundaries and inside the grains. The precipitates were characterized by varying content of Cr and Mo, indicating the presence in the structure of more than one type of the brittle phase characteristic for this group of materials. The simulation using Thermo-Calc software has confirmed the presence of ferrite in all tested alloys. In the material containing 4.3% Si, the Cr and Si enriched precipitates, such as G phase and Cr3Si were additionally observed to occur.
Przejdź do artykułu

Abstrakt

The results of studies presented in this article are an example of the research activity of the authors related to lead-free alloys. The studies covered binary SnZn90 and SnZn95 lead-free alloys, including their microstructure and complex mechanical characteristics. The microstructure was examined by both light microscopy (LM) and scanning electron microscopy (SEM). The identification of alloy chemical composition in micro-areas was performed by SEM/EDS method. As regards light microscopy, the assessment was of both qualitative and quantitative character. The determination of the geometrical parameters of microstructure was based on an original combinatorial method using phase quantum theory. Comprehensive characterization of mechanical behavior with a focus on fatigue life of alloys was performed by means of the original modified low cycle fatigue method (MLCF) adapted to the actually available test machine. The article discusses the fatigue life of binary SnZn90 and SnZn95 alloys in terms of their microstructure. Additionally, the benefits resulting from the use of the combinatorial method in microstructure examinations and MLCF test in the quick estimation of several mechanical parameters have been underlined.
Przejdź do artykułu

Abstrakt

A eutectic reaction is a basic liquid-solid transformation, which can be used in the fabrication of high-strength in situ composites. In this study an attempt was made to ensure directional solidification of Fe-C-V alloy with hypereutectic microstructure. In this alloy, the crystallisation of regular fibrous eutectic and primary carbides with the shape of non-faceted dendrites takes place. According to the data given in technical literature, this type of eutectic is suitable for the fabrication of in-situ composites, owing to the fact that a flat solidification front is formed accompanied by the presence of two phases, where one of the phases can crystallise in the form of elongated fibres. In the present study an attempt was also made to produce directionally solidifying vanadium eutectic using an apparatus with a very high temperature gradient amounting to 380 W/cm at a rate of 3 mm/h. Alloy microstructure was examined in both the initial state and after directional solidification. It was demonstrated that the resulting microstructure is of a non-homogeneous character, and the process of directional solidification leads to an oriented arrangement of both the eutectic fibres and primary carbides.
Przejdź do artykułu

Abstrakt

The paper presents results of Ti-addition to High Chromium Cast Iron (HCCI) on the structure and selected mechanical properties. For this study casted two sets of cylinders with dimensions ø20 mm, ø15 mm x 250 mm, for the High Chromium Cast Iron (HCCI) and with the 4% by mass Ti-addition. Melts were performed in the induction furnace crucible capacity of 15 kg. During the heats the cup with installed S type thermocouple was poured to record the cooling curves. The cylinders were subjected to the static bending strength test. Samples for the test microstructure and Rockwell hardness were cut from the cylinders. The study shows that the addition of titanium had an impact on the structure and thus the properties of High Chromium Cast Iron (HCCI). In subsequent studies, through an appropriate choice of chemical composition and proper process control, it is planned to obtain in the structure the titanium carbides TiC and chromium carbides with type (Cr, Fe)7C3.
Przejdź do artykułu

Abstrakt

The cast alloys crystallizing in Fe-C-V system are classified as white cast iron, because all the carbon is bound in vanadium carbides. High vanadium cast iron has a very high abrasion resistance due to hard VC vanadium carbides. However, as opposed to ordinary white cast iron, this material can be treated using conventional machining tools. This article contains the results of the group of Fe-C-V alloys of various microstructure which are been tested metallographic, mechanical using an INSTRON machine and machinability with the method of drilling. The study shows that controlling the proper chemical composition can influence on the type and shape of the crystallized matrix and vanadium carbides. This makes it possible to obtain a high-vanadium cast iron with very high wear resistance while maintaining a good workability.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji