Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Coal mining activities carried out for 200 years in Upper Silesia have had a negative effect on buildings. T his impact is in all cases related with continuous deformations of the surface and in certain cases with discontinuous deformations (mostly cave-ins), changes in water relations and mining tremors. T he paper presents an evaluation of the impact of a mining activity on a building situated in the Upper Silesian Coal Basin. T he building was affected by continuous deformations and mining tremors. Calculations were made of the values of deformation rates by means of Budryk–Knothe’s theory, which were partly verified on the basis of the results from geodetic measurements. An analysis of the velocity and acceleration of basement vibrations caused by mining-induced tremors was also conducted. T he conclusions included a high consistency between the results obtained on the basis of calculations and the values obtained by means of PGA and PGV measurements. In the case of tremors with the highest energy in the hipocentrum, there an empirical formula allowing for calculation of PGA value in given geological and mining conditions was also proposed. T he application range of the formula mentioned above is obviously limited only to the conditions in consideration. The presented conclusions indicate that at present, sufficiently precise methods, allowing for calculations for practical purposes, not only of deformation indices’ values, but also of PGV and PGA values, presently exist.
Go to article

Abstract

Mining-induced seismicity, particularly high-energy seismic events, is a major factor giving rise to dynamic phenomena within the rock strata. Rockbursts and stress relief events produce the most serious consequences in underground mines, are most difficult to predict and tend to interact with other mining hazards, thus making control measures difficult to implement. In the context of steadily increasing mining depth within copper mines in the Legnica-Głogów Copper Belt Area (Poland) alongside the gradually decreasing effective mining thickness, a study of the causes and specificity of mining-induced seismicity in specific geological and mining settings may improve the effectiveness of the prevention and control measures taken to limit the negative impacts of rockbursts in underground mine workings, thus ensuring safe working conditions for miners. This study investigates the presumed relationship between the mined ore deposit thickness and fundamental parameters of mining-induced seismicity, with the main focus on the actual locations of their epicenters with respect to the working face in commonly used room-and-pillar systems. Data recalled in this study was supplied by the O/ZG Rudna geophysics station. Based on information about the actual ore deposit thickness in particular sections of the mines (Rudna Główna, Rudna Północna, Rudna Zachodnia) and recent reports on seismic activity in this area, three panels were selected for further studies (each in different mine region), where the ore deposit thickness was varied (panel G-7/5 – Rudna Główna, panel XX/1 – Rudna Północna, panel XIX/1 – Rudna Zachodnia). Data from seismic activity reports in those regions was used for energetic and quantitative analysis of seismic events in the context of the epicenter location with respect to the selected mining system components: undisturbed strata, working face and abandoned excavations. In consideration of the available rockburst control methods and preventive measures, all events (above 1 × 103 J) registered in the database were analysed to infer about the global rockburst hazard level in the panel and phenomena induced (provoked) by blasting were considered in order to evaluate the effectiveness of the implemented control measures.
Go to article

Abstract

This article concerns numerical modeling of the impact of mining operations on fault behavior, carried out on the basis of a calculation program based on the finite element method. It was assumed that the fault is a single discontinuity in the form of a vertically-oriented plane, and the conditions in which surfaces merge are defined by the right of the Coulomb friction. On the one hand, the calculations are related to the fault’s response to additional weight resulting from mining operations, and on the other, they are related to the impact that occurrences in the fault’s plane had on the immediate surroundings of the extraction center. The behavior of the fault was analyzed based on distributions in the plane of shear stress and slip, together with their range and energy dissipated due to friction. In turn, the impact of the fault on its immediate environment was analyzed based on variations in the total energy density of elasticity. The results of numerical modeling made it possible to draw conclusions concerning mining operation in the proximity of tectonic dislocations in the context of seismic hazard’s levels.
Go to article

This page uses 'cookies'. Learn more