Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Osteocalcin is a major non-collagenous component of the bone extracellular matrix and is considered to be an indicative factor of osteoblast differentiation. In the present study, we detected osteocalcin expression in different antler areas and growth phases by immunohisto- chemistry. Osteocalcin was highly expressed in all areas during the mineralization period and in mesenchymal cell and chondrocyte areas during the rapid growth period. The nucleotide sequence of the osteocalcin gene in sika deer antler was determined. The open reading frame was 303 bp encoding a protein of 100 amino acids. The estimated molecular mass of osteocalcin was 10.38 kDa and the theoretical isoelectric point was 5.37. The osteocalcin gene with a 6× His-tag at the C-terminus was cloned into the pGEX-4T1 vector and expressed in Escherichia coli under optimal conditions. The recombinant soluble protein fused with GST was purified with Ni-NTA resin. The purified osteocalcin protein exhibited a significant increase in HA adhesion and promoted antler chondrocyte proliferation. Osteocalcin is an important factor in regulating the rapid growth and differentiation of deer antlers.
Go to article

Abstract

Insulin receptor substrate 2 (IRS-2) modulates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which controls the suppression of gluconeogenic genes; IRS-2 is also a critical node of insulin signaling. Because of the high homology between pig and human IRS-2, we investigated the expression pattern and function of porcine IRS-2. QPCR and immunoblotting were used to detect the IRS-2 expression level in different tissues. There were high IRS-2 levels in the cerebral cortex, hypothalamus, and cerebellum in the central nervous system. In peripheral tissues, IRS-2 was expressed at relatively high levels in the liver. Immunohistochemistry analysis revealed that IRS-2 was mainly distributed in the hypothalamus and cerebral cortex. Furthermore, IRS-2 knockdown porcine hepatocytes and porcine aortic endothelial cells (PAECs) were generated. The IRS-2 knockdown induced abnormal expression of genes involved in glycolipid metabolism in hepatocytes and reduced the antiatherosclerosis ability in PAECs. In addition, we disrupted IRS-2 in porcine embryonic fibroblasts (PEFs) using the CRISPR/Cas9 genome editing system, before finally generating IRS-2 knockout embryos by somatic cell nuclear transfer (SCNT). Taken together, our results indicate that IRS-2 might be a valuable target to establish diabetes and vascular disease models in the pig.
Go to article

This page uses 'cookies'. Learn more