Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper presents the statical research tests of rod bolt made of plastic with a length of 5.5 m, which were performed in a modern laboratory test facility at the Department of Underground Mining of the University of Science and Technology. Innovative The Self-excited Acoustic System (SAS) used to measure stress changes in the bolt support was characterized. The system can be used for the non-destructive evaluation of the strain of the bolt around the excavations as well as in tunnels. The aim of the study was to compare the re-sults recorded by two different measuring systems, thanks to which it will be possible to assess the load of long bolt support by means of the non-destructive method. The speed and simplicity of measurement, access to the sensors, accuracy of measurement and reading should be kept in mind in determining the load of rock bolt support . In addition, the possibility of damage to the sensor as a re-sult of technological or natural hazards should also be taken into account. In economic conditions, the „technical - balance laws of production”, which ex-cludes the use of load sensors on each bolt must be preserved. The use of indi-vidual load sensors of rock bolt support for the boundary state, allows appro-priate protection actions of the mining crew against sudden loss of excavation stability to be taken. The paper presents two basic effects used in the ultrasonic measurement sys-tem. The first result was the existence of stable limit cycle oscillations for posi-tive feedback. This effect is called the self-excited effect. The second effect is called the elasto-acoustic effect. It means that with the change of elastic stress-es in the material bring the change of the speed of propagation of the wave. In this connection, the propagation time between measuring heads is also changed. This effect manifests itself in the change in the oscillation frequency of the self-excited system. For this reason, by measuring the frequency of self-excited oscillation, it is possible to indirectly determine the level of effort of the tested material.
Go to article

Abstract

The present paper is devoted to the discussion and review of the non-destructive testing methods mainly based on vibration and wave propagation. In the first part, the experimental methods of actuating and analyzing the signal (vibration) are discussed. The piezoelectric elements, fiber optic sensors and Laser Scanning Doppler Vibrometer (SLDV) method are described. Effective detecting of the flaws needs very accurate theoretical models. Thus, the numerical methods, e.g. finite element, spectral element method and numerical models of the flaws in isotropic and composite materials are presented. Moreover, the detection of the damage in structures, which are subjected to cyclic or static loads, is based on the analyzing of the change in natural frequency of the whole structure, the change of internal impedance of the material and the change in guided waves propagating through the investigated structure. All these cases are characterized in detail. At the end of this paper, several applications of the structural health monitoring systems in machine design and operation are presented.
Go to article

This page uses 'cookies'. Learn more