Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Presented work considers flow and thermal phenomena occurring during the single minijet impingement on curved surfaces, heated with a constant heat flux, as well as the array of minijets. Numerical analyses, based on the mass, momentum and energy conservation laws, were conducted, regarding single phase and two-phase simulations. Focus was placed on the proper model construction, in which turbulence and boundary layer modeling was crucial. Calculations were done for various inlet parameters. Initial single minijet results served as the basis for the main calculations, which were conducted for two jet arrays, with flat and curved heated surfaces. Such complex geometries came from the cooling systems of electrical devices, and the geometry of cylindrical heat exchanger. The results, regarding Nusselt number, heated surface temperature, turbulence kinetic energy, production of entropy and vorticity, were presented and discussed. For assumed geometrical parameters similar results were obtained.
Go to article

Abstract

Steady state two-dimensional numerical simulation of laminar heat transfer and fluid flow in a scraped surface heat exchanger (SSHE) is presented. Typical SSHE consists of a stator, rotating shaft and scraping blades. Due to symmetry only a quarter of the heat exchanger is modelled. Governing equations for transport of mass, momentum and energy are discretised and solved with the use of commercial CFD code. The results are presented in a nondimensional form for velocity, pressure and temperature distributions. Local and averaged Nusselt number along the stator wall are calculated and depicted in graphs. It was found that the thirty fold increase of the cReynolds number, leads to heat transfer enhancement rate by three times.
Go to article

Abstract

This paper presents the numerical solution to the unsteady natural convection problem in micropolar fluid in the vicinity of a vertical plate, heat flux of which rises suddenly at a given moment. In order to solve this problem the method of finite differences was applied. The numerical results have been presented for a range of values of the dimensionless material properties and fluid Prandtl number. The analysis of the results shows that the intensity of the heat transfer in micropolar fluid is lower compared to the Newtonian fluid.
Go to article

Abstract

Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3(volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3/water nanofluid are also studied and the results are plotted graphically.
Go to article

This page uses 'cookies'. Learn more