Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Background: Anorexia nervosa is a widely prevalent eating disorder that often leads to life-threatening complications. Since it mostly concerns females, many authors have focused on studying the reproductive system in anorexic women. Recently discovered telocytes may give a new insight into the pathophysiology of gynecological complications in these patients. Material and Methods: We adopted an animal model of anorexia nervosa induced by voluntary physical activity. Sixteen female Wistar rats were divided into two groups: control and activity-based anorexia. When the weight loss of activity-based anorexia (ABA) rats reached 25% animals were euthanized. Size and weight measurements as well as histopathological analysis of the reproductive organs were performed. Additionally, we used immunohistochemical staining for detection of telocytes. Results: Telocytes were identified in uteri of anorectic rats but no diff erences were observed when compared to the control group. Nevertheless, in the ABA group the weight of the uteri and the number of follicles in the ovaries decreased significantly. Conclusions: Our rat model of anorexia nervosa mimics the effects of this eating disorder that occur in the female reproductive system since we reported ovarian dysfunction and uterine involution in the experimental animals. It supports its potential role in the further studies of anorexia pathophysiology and treatment possibilities.
Go to article

Abstract

The purpose of the study was to study the activity of the phytoestrogen genistein (GEN) act- ing on FSHR and LHR in rat ovaries with polycystic ovary syndrome (PCOS). Sixty rats were di- vided into six groups. Rats in the dose group received genistein at a concentration of either 5 (low genistein dose group, L-gen), 10 (middle genistein dose group, M-Gen) or 20 (high genistein dose group, H-Gen) mg per kg of body weight per day. Estrogen group (EG, received 0.5 mg/kg Dieth- ylstilbestrol). Concentration of sex hormones in serum was quantified by enzyme-linked immuno- sorbent assay (ELISA). Expressions of follicle-stimulating hormone receptor (FSHR) and lutein- izing hormone receptor (LHR) protein were determined by immunohistochemistry. Treatment with genistein resulted in a strong stimulation of the concentration of sex hormone in serum. The concentration of progesterone and FSH was significantly higher in H-Gen when compared to the PCOS model control group (MG) (P < 0.01). In contrast, the concentration of testosterone, LH and the ratio of LH/FSH decreased in GEN treatment groups compared to MG, the effect was statistically significant, tested by the ANOVA test (p<0.01). For hormone receptor activity, treat- ment with genistein resulted in an improvement of ovarian function with LHR protein expression being enhanced and FSHR protein expression being suppressed. Our results demonstrate that Genistein played a significant role in regulating FSH and LH receptor expression to improve perimenopausal ovarian and uterine function.
Go to article

Abstract

In this investigation, the effects of genistein (GEN) on the expression of steroidogenic genes such as steroidogenic acute regulatory protein (StAR), side-chain cleavage enzymes (P450scc) and cytochrome P450 aromatase (CYP19) were assessed. For this study, forty young female Sprague Dawley (SD) rats at aged 2-3 months (200±20 g) and forty aged female SD rats aged 10-12 months (490±20 g) were selected. Also, based on weight they were divided into a negative control group (NC), three different GEN dose groups, which received GEN of 15, 30, 60 mg/kg, and a positive control group (PC). The experiment lasted 30 days. Concentrations of serum hormones were determined by Enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions of StAR, P450scc and CYP19 were determined by Real-Time PCR and western blot techniques. It was observed that 30-60 mg/kg GEN could increase the expression of androgen generating key enzymes in the young rat ovary. GEN also significantly increased progesterone and E2 levels in the serum of aged rats and reduced the levels of LH and FSH in the serum of both young and aged rats. Compared with young rats, the effect of GEN on the ovary of aged rats was stronger and a lower dose of GEN (15 mg/kg) showed an obvious effect on these indicators. GEN influenced both estrogen level and indicators associated with estrogen and androgen transformation processes, which indicates that GEN can impair the growth and maturation of the ovary.
Go to article

This page uses 'cookies'. Learn more