Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 21
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.
Przejdź do artykułu

Abstrakt

The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.
Przejdź do artykułu

Abstrakt

During design of the casting products technology, an important issue is a possibility of prediction of mechanical properties resulting from the course of the casting solidification process. Frequently there is a need for relations describing mechanical properties of silumin alloys as a function of phase refinement in a structure and a porosity fraction, and relations describing phase refinement in the structure and the porosity fraction as a function of solidification conditions. The study was conducted on castings of a 22 mm thick plate, made of EN AC-AlSi7Mg0,3 alloy in moulds: of quartz sand, of quartz sand with chill and in permanent moulds. On the basis of cooling curves, values of cooling rate in various casting parts were calculated. The paper also presents results of examination of distance between arms in dendrites of a solid solution α (DASL), precipitations length of silicon in an eutectic (DlSi) and gas-shrinkage porosity (Por) as a function of cooling rate. Statistical relations of DASL, DlSi, Por as a function of cooling rate and statistical multiparameter dependencies describing mechanical properties (tensile strength, yield strength, elongation) of alloy as a function of DASL, DlSi and Por are also presented in the paper.
Przejdź do artykułu

Abstrakt

Today’s industry aims at such situation, where number of defective products, so called defects shall approach to zero. Therefore, one introduces a various changes in technology of production, introduces improvements which would help in accomplishment of this objective. Another important factor is introduction of different type of testing, which shall help in assessment which factor has significant effect on quantity of rejects, and which one could be neglected. Existence of casting rejects is unavoidable; therefore a new ideas, technologies and innovations are necessary in the entire widely understood foundry branch, in order to minimize such adverse effect. Performance of tests aimed at unequivocal determination of an effect of vibrations during crystallization on mechanical properties and porosity of the EN ACAlSi17 alloy was the objective of the present work. To do this, there were produced 36 castings from EN AC-AlSi17 alloy. All the castings underwent machining operations. Half of the casting was destined to strength tests, the other half served to determination of an effect of vibrations on porosity of the alloy. The specimens were divided into 12 groups, depending on amplitude of vibrations and tilt angle of metal mould during pouring operation.
Przejdź do artykułu

Abstrakt

Porosity is one of the major defects in aluminum castings and results in a decrease of the mechanical properties of Al-Si alloys. It is induced by two mechanisms: solidification shrinkage and gas segregation. One of the methods for complex evaluation of macro and micro porosity in Al-Si alloys is using the Tatur test technique. This article deals with the evaluation of porosity with the help of Tatur tests for selected Al-Si alloys. These results will be compared with results obtained from the ProCAST simulation software.
Przejdź do artykułu

Abstrakt

The formation of oxide film on the surface of aluminium melts, i.e. bifilms, are known to be detrimental when they are incorporated into the cast part. These defects causes premature fractures under stress, or aid porosity formation. In this work, Al-12 Si alloy was used to cast a step mould under two conditions: as-received and degassed. In addition, 10 ppi filters were used in the mould in order to prevent bifilm intrusion into the cast part. Reduced pressure test samples were collected for bifilm index measurements. Samples were machined into standard bars for tensile testing. It was found that there was a good agreement with the bifilm index and mechanical properties.
Przejdź do artykułu

Abstrakt

At thermal junctions of aluminium alloy castings and at points where risering proves to be difficult there appear internal or external shrinkages, which are both functionally and aesthetically inadmissible. Applying the Probat Fluss Mikro 100 agent, which is based on nano-oxides of aluminium, results in the appearance of a large amount of fine microscopic pores, which compensate for the shrinking of metal. Experimental tests with gravity die casting of AlSi8Cu3 and AlSi10Mg alloys have confirmed that the effect of the agent can be of advantage in foundry practice, leading to the production of castings without local concentrations of defects and without the appearance of shrinkages and macroscopic gas pores. Also, beneficial effect on the mechanical properties of the metal has been observed.
Przejdź do artykułu

Abstrakt

Design of gating system is an important factor in obtaining defect-free casting. One of the casting defects is a porosity caused by internal shrinkage in solidification process. Prediction of the internal shrinkage porosity in the femoral stem of commercially pure titanium (CP-Ti) is investigated based on the gating system design. The objective of this research is to get the best gating system between three gating system designs. Three gating system designs of the femoral stem were simulated in an investment casting method. The internal shrinkage porosity occurs on the largest part and near the ingate of the femoral stem. The gating system design that has ingates cross section area: 78.5; 157; and 128.5 mm2 has the least of the internal shrinkage porosity. This design has the most uniform solidification in the entire of the femoral stem. An experiment is conducted to validate the simulation data. The results of internal shrinkage porosity in the three gating system designs in the simulation were compared with the experiment. Based on the comparison, the trend of internal shrinkage porosity at the three gating system designs in the simulation agrees with the experiment. The results of this study will aid in the elimination of casting defect.
Przejdź do artykułu

Abstrakt

The paper evaluates two approaches of numerical modelling of solidification of continuously cast steel billets by finite element method, namely by the numerical modelling under the Steady-State Thermal Conditions, and by the numerical modelling with the Traveling Boundary Conditions. In the paper, the 3D drawing of the geometry, the preparation of computational mesh, the definition of boundary conditions and also the definition of thermo-physical properties of materials in relation to the expected results are discussed. The effect of thermo-physical properties on the computation of central porosity in billet is also mentioned. In conclusion, the advantages and disadvantages of two described approaches are listed and the direction of the next research in the prediction of temperature field in continuously cast billets is also outlined.
Przejdź do artykułu

Abstrakt

It is well-known that the better the control of the liquid aluminium allows obtaining of better properties. One of the most important defects that is held responsible for lower properties has been the presence of porosity. Porosity has always been associated with the amount of dissolved hydrogen in the liquid. However, it was shown that hydrogen was not the major source but only a contributor the porosity. The most important defect that causes porosity is the presence of bifilms. These defects are surface entrained mainly due to turbulence and uncontrolled melt transfer. In this work, a cylindrical mould was designed (Ø30 x 300 mm) both from sand and die. Moulds were produced both from sand and die. Water cooled copper chill was placed at the bottom of the mould in order to generate a directional solidification. After the melt was prepared, prior to casting of the DC cast samples, reduced pressure test sample was taken to measure the melt quality (i.e. bifilm index). The cast parts were then sectioned into regions and longitudinal and transverse areas were investigated metallographically. Pore size, shape and distribution was measured by image analysis. The formation of porosity was evaluated by means of bifilm content, size and distribution in A356 alloy.
Przejdź do artykułu

Abstrakt

The paper presents the results of experimental-simulation tests of expansion-shrinkage phenomena occurring in cast iron castings. The tests were based on the standard test for inspecting the tendency of steel-carbon alloys to create compacted discontinuities of the pipe shrinkage type. The cast alloy was a high-silicone ductile iron of GJS - 600 - 10 grade. The validation regarding correctness of prognoses of the shrinkage defects was applied mostly to the simulation code (system) NovaFlow & Solid CV (NFS CV). The obtained results were referred to the results obtained using the Procast system (macro- and micromodel). The analysis of sensitivity of the modules responsible for predicting the shrinkage discontinuities on selected pre-processing parameters was performed, focusing mostly on critical fractions concerning the feeding flows (mass and capillary) and variation of initial temperature of the alloy in the mould and heat transfer coefficient (HTC) on the casting - chill interface.
Przejdź do artykułu

Abstrakt

The article presents an example of analysis of the influence of selected parameters deriving from data acquisition in foundries on the occurrence of Gas porosity defects (detected by Visual testing) in castings of ductile cast iron. The possibilities as well as related effectiveness of prediction of this kind of defects were assessed. The need to rationally limit the number of possible parameters affecting this kind of porosity was indicated. Authors also benefited from expert group's expertise in evaluating possible causes associated with the creation of the aforementioned defect. A ranking of these parameters was created and their impact on the occurrence of the defect was determined. The classic statistical tools were used. The possibility of unexpected links between parameters in case of uncritical use of these typical statistical tools was indicated. It was emphasized also that the acquisition realized in production conditions must be subject to a specific procedure ordering chronology and frequency of data measurements as well improving the casting quality control. Failure to meet these conditions will significantly affect the difficulties in implementing and correcting analysis results, from which INput/OUTput data is expected to be the basis for modelling for quality control.
Przejdź do artykułu

Abstrakt

Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.
Przejdź do artykułu

Abstrakt

The paper presents the results of investigations concerning the influence of negative (relative) pressure in the die cavity of high pressure die casting machine on the porosity of castings made of AlSi9Cu3 alloy. Examinations were carried out for the VertaCast cold chamber vertical pressure die casting machine equipped with a vacuum system. Experiments were performed for three values of the applied gauge pressure: -0.3 bar, -0.5 bar, and -0.7 bar, at constant values of other technological parameters, selected during the formerly carried initial experiments. Porosity of castings was assessed on the basis of microstructure observation and the density measurements performed by the method of hydrostatic weighing. The performed investigation allowed to find out that – for the examined pressure range – the porosity of castings decreases linearly with an increase in the absolute value of negative pressure applied to the die cavity. The negative pressure value of -0.7 bar allows to produce castings exhibiting porosity value less than 1%. Large blowholes arisen probably by occlusion of gaseous phase during the injection of metal into the die cavity, were found in castings produced at the negative pressure value of -0.3 bar. These blowholes are placed mostly in regions of local thermal centres and often accompanied by the discontinuities in the form of interdendritic shrinkage micro-porosity. It was concluded that the high quality AlSi9Cu3 alloy castings able to work in elevated temperatures can be achieved for the absolute value of the negative pressure applied to the die cavity greater than 0.5 bar at the applied set of other parameters of pressure die casting machine work.
Przejdź do artykułu

Abstrakt

Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was diecast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.
Przejdź do artykułu

Abstrakt

In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m・℃1/2・s -3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.
Przejdź do artykułu

Abstrakt

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the porosity of castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. Additionally, for the purpose of comparison, the porosity of specimens cut out directly of the MgAl9Zn1 ingot alloy was also determined. The examinations consisted in the qualitative assessment of porosity by means of the optical microscopy and its quantitative determination by the method of weighting specimens in air and in water. It was found during the examination that the porosity of castings decreases with an increase in the home scrap fraction in the metal charge. The qualitative examinations confirmed the beneficial influence of the increased home scrap fraction on the porosity of castings. It was concluded that the reusing of home scrap in a foundry can be a good way of reduction of costs related to the production of pressure castings.
Przejdź do artykułu

Abstrakt

The formulas have been entered and approved for the calculation of porosity distribution on the thickness of layer of fine-grained mixture during its separation by the inclined flat or vertical cylinder vibro sieves. It has been attained as a result of approximation of tabular information of the obtained numerical computer integration of the specially worked out nonlinear differential equations of the second order in a dimensionless form. For approximation, the function of degree coefficients and index is used for the degrees which are certain by the Aitken's method. Coefficients of the entered analytical dependence are the vibro sieves related to the parameters obtained by mechanical descriptions of the separated material. Coefficients of the entered analytical dependence are related to the parameters of vibro sieves and mechanical descriptions of the separated material. In the case of cylinder vertical vibro sieve the action of centrifugal force is also taken into account. The method of mixture porosity calculation does not need a computer numerical integration of nonlinear differential equations conducted by other authors for solving this problem. Comparison of numerical results of the proposed analytical method of calculation with the ones described in literature, have confirmed its high accuracy results, for the differences do not exceed one percent. The expounded method is universal enough and simple in use, besides it opens the possibilities of subsequent analytical integration of differential equalizations of motion at the calculation of kinematics descriptions of grain flow. The developed method gives the opportunity to also solve the inverse task when, according to experimental measurements of porosity values of grain mixtures on the thickness of movable separated layer, it is needed to find the value of phenomenological permanent that is included in the expressions of coefficients of initial differential equalization. In this way, the adequacy of the mathematical model is improved. The use of approximation of degree considerably simplifies the method of authentication of differential equalization coefficients. In the article, the examples of grain mixture porosity calculation as well as the examples of phenomenological permanent authentication have been resulted after experimental calculations for both the variants of vibro sieves.
Przejdź do artykułu

Abstrakt

The paper concerns the problem of discontinuity in high pressure die castings (HPDC). The compactness of their structure is not perfect, as it is sometimes believed. The discontinuities present in these castings are the porosity as follow: shrinkage and gas (hydrogen and gas-air occlusions) origin. The mixed gas and shrinkage nature of porosity makes it difficult to identify and indicate the dominant source. The selected parameters of metallurgical quality of AlSi9Cu3 alloy before and after refining and the gravity castings samples (as DI - density index method), were tested and evaluated. This alloy was served to cast the test casting by HPDC method. The penetrating testing (PT) and metallographic study of both kinds of castings were realized. The application of the NF&S simulation system allowed virtually to indicate the porosity zones at risk of a particular type in gravity and high-pressure-die-castings. The comparing of these results with the experiment allowed to conclude about NF&S models validation. The validity of hypotheses concerning the mechanisms of formation and development of porosity in HPDC casting were also analyzed.
Przejdź do artykułu

Abstrakt

The analytical method of calculation of a withstand motion of fine-grained mixture is worked out in the vertical cylindrical sieve of vibrocentrifuge. Integration of differential equalization of motion is show out the reserved formulas for the calculation of kinematics descriptions of grain flow. The two-parameter continual model of the state of separation mixture is used in researches, as a heterogeneous continuous environment with variable specific mass (by porosity) on the thickness of movable layer of friable material. Change of specific mass on a radial coordinate in the cylindrical layer of mixture approximated by the function of degree, the coefficients of that are certain by the Aitken's method. Due to such approximation, the analytical decision of differential equalization of the grain flow, shown out with the use of two-parameter rheological dependence, in that the constituent of linear viscid resistance is complemented by the constituent of remaining internal dry friction, proportional overpressure in mixture, is built. An analytical decision is expressed as squaring that is not expressed through elementary functions in closed form, the close method of calculation of integral offers that is why, with the use of partial sum of row of degree. The results got close formulas result in that well comport with the results of numerical computer integration of squaring. Such method the continual models of grain flow on vibrosieves, it is assumed in that friable material is fully confined internal dry friction, are generalized known for, as a result of vibrodilution. The examples of calculations are considered, where influence of different factors is investigational, in particular values of rheological coefficients and change of porosity, on kinematics descriptions. It is set that calculation kinematics descriptions of grain flow substantially depend not only on the thickness of movable layer and rheological constants, and also from the concentration of grains near free surface of the mixture. Thus, worked out here a method of research of vertical grain flow in the cylindrical sieve of vibrocentrifuge can be an alternative to other methods in that for the calculation of motion of grain mixture of variable porosity conducted numerical computer integration of nonlinear differential equalizations.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji