Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

Calretinin (CR), a calcium-binding protein from EF-hand family, is localised in non-pyramidal GABA-ergic interneurons of the hippocampus. CR takes part in maintaining calcium binding homeostasis, which suggests its neuroprotective role. Hippocampal neurons contain membrane transient receptor potential vanilloid 1 (TRPV1) which binds to capsaicin (CAP) contained in habanero pepper fruits. Few in vivo studies have revealed the effect of CAP on interneurons containing CR. The aim of the present study was to investigate the CR immunoreac- tivity in interneurons of the hippocampal CA1 field and dentate gyrus (DG) in adult rats after intragastric admin- istration of the habanero pepper fruits. Wistar rats received a peanut oil – control group (C), and oil suspension of habanero pepper fruits at doses of 0.025 g dm/kg b.w. – group I and 0.08 g dm/kg b.w. – group II for 28 days. After euthanasia, the brains were collected and embedded in paraffin blocks using a routine histological tech- nique. Frontal hippocampal sections were immunohistochemically stained for CR by using a peroxidase-antiper- oxidase method. CR immunoreactive (CR-IR) interneurons were morphologically and morphometrically ana- lyzed under a light microscope. The results showed similar shapes and distribution of cells in both areas of the brain in group C and I of animals. However, CR-IR interneurons in the hippocampal CA1 field and in DG were occasionally observed in the group II of rats. The results of morphometric studies did not reveal statistically significant differences in the surface area and shape index of cells between examined brain regions from groups I and II compared to group C. Only in group II of rats, an increase in the digital immunostaining intensity of CR-IR interneurons was found in DG. Low number of CR-IR interneurons in the hippocampal CA1 field and in the DG, under the influence of a large dose of habanero pepper fruits containing CAP, may be caused by the activation of TRPV1 receptors and the increase in Ca2+ ions in these cells. This phenomenon may ultimately lead to neuronal death and may disturb neuronal conduction.
Go to article

Abstract

The present study was aimed to investigate oxidative stress, DNA damage, and histopatholog- ical alterations in hepatic tissues of splenectomized Wistar rats experimentally infected with Ba- besia bigemina. Rats were challenged with 5x106 infected erythrocytes. Babesia infection was con- firmed both with Giemsa’s staining blood smears and nested-PCR amplified region of apical membrane antigen-1 (AMA-1) gene. Parasitemia reached approximately 10 % at day 5 post-in- fection. Livers of infected rats were enlarged and darker in color, became extremely brittle with marked congestion. Microscopic evaluation showed cytoplasmic clearing of hepatocytes and se- vere hydropic changes with significantly dilated sinusoids containing macrophages and also intra- sinosoidal parasitized erythrocytes. Severe infiltration of lymphoplasma cells was also present throughout the liver parenchyma. Furthermore, Kupffer cells were enlarged and, occasionally, containing Babesia-parasitized erythrocytes. The activity of Glutathione (GSH) and catalase (CAT), and total antioxidant capacity (TAC) were also significantly decreased (p < 0.05) after infection of rats with B. bigemina. B. bigemina infection also induced a significant increase (p < 0.05) in hepatic malondialdehyde (MDA) and nitric oxide-derived products (NOx) concentra- tions as well as amount of endogenous hepatocytes DNA damage. Hepatic damage was also re- flected through the measurement of lactic acid dehydrogenase (LDH) and protein carbonyl con- tent (PCO) in liver cells. These two indices of liver injury were also significantly elevated (p < 0.5) during B. bigemina infection. Evaluation of correlation between assayed variables in infected rats revealed that MDA levels were positively correlated with PCO, NOx, LDH and DNA damage in the infected group and negatively correlated with GSH, CAT and TAC. There was also an inverse relationship between the antioxidant enzymes activities of GSH, CAT and TAC with PCO, NOx and DNA damage in infected rats. However, NOx showed positive correlation with PCO and DNA damage in infected rats. On the basis of the above results it can be concluded that the Ba- besia infection increases oxidative stress markers, protein carbonyl content and DNA damage and decreases antioxidant enzymes activities in the liver. These results suggest that B. bigemina infec- tion could alter the liver histopathology and causes DNA damage following oxidative stress in hepatic tissue. Further studies are needed to precisely define how hepatic tissue damage takes place in B. bigemina infection.
Go to article

Abstract

Twenty eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague dawley rats were randomly divided into 4 groups as 7 rats in each group. Except for the control one, aflatoxin B1 (7.5 μg / 200 g), resvera- trol (60 mg / kg) was administered to rats of 3 other groups. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters. In terms of pathological parameters - histopathological examination - in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investi- gated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevent the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability.
Go to article

Abstract

Therefore, the aim of the present study was to evaluate the possible effect of bilberry fruit (Vaccinium myrtillus L.) supplement in a daily diet on the cognitive behaviour of the rats and the expression of paravalbumin (PV) in populations of hippocampal neurons. It has been postulated that the antioxidants present in bilberry fruit may act as neuroprotective factors playing also a significant role as memory enhancements. Forty Wistar rats with a similar average body weight (460 ± 0.4 g) were divided into four groups (n=10 per group). The control group received standard feed (210 g/week), whereas animals of experimental groups received standard feed supplemented with bilberry (per os) at consumed doses of 2 g (group I), 5 g (group II), and 10 g/kg b.w./ /day (group III). After three months of feeding with bilberry, the modified elevated plus-maze test (mEPM) was performed. After 32 weeks of feeding, brains were collected and PV-immunoreactive (ir) neurons were immunohistochemically visualized. In the modified elevated plus-maze test, transfer latency examined 2 h and 24 h after the acquisition session was significantly shorter (p<0.05) in the group II in comparison with the control group. In CA1 and CA2/CA3 hippocampal fields as well as dentate gyrus of all experimental groups, a significant (p<0.05) decrease in number of PV-ir neurons were found. In relation to the control group, the mean subpopulation of PV-ir neurons found in groups II and III were significantly reduced. The subpopulations of PV-ir neurons found in DG of all experimental groups were significantly reduced in comparison to the control. In conclusion the in the present paper we demonstrated a relationship between the diet rich in a bilberry fruit and process of memory as well as numbers of calcium- binding protein-expressing hippocampal neurons. Our results may be source of basic knowledge for further research aiming at neuroprotective role of the bilberry fruit.
Go to article

Abstract

The study was undertaken to determine the effect of continuation or changes of the diet on the morphometry and histomorphometry of bone in male and female Wistar rats with experimen- tally induced obesity by high energetic diet. Sixty-four 90-day-old Wistar rats obtained from obese parents (16 male, 16 female) and control parents (16 male, 16 female) were used in this study. After 21 days of the baby period, rats were divided into four groups: obese rats fed with high energy feed (F/F), control rats fed with a standard diet (C/C), obese rats with changed diet from high energy diet to control diet (F/C) and control rats with changed diet from control diet to high energy diet (C/F). After 90 days of experimental feeding, the rats were sacrificed. Thereafter, body weight and the isolated humerus were measured and next, the histological stainings and counts were done. Our results revealed that change in the parent’s diet from F to C in the female leads to increased bone growth length and reduction of body weight in female and male. Reverse diet changes (from C to F) lead to decreased bone length only in the female. Moreover, the con- tinuation by offspring of both sexes with a high-energy diet contributes to a reduction in osteo- cytes, reduction in bone marrow cavity and cortical expansion, but a change in nutrition from parents’ standard diet to high-energy diet leads to increase in osteocytes dimensions. The contin- uation of feeding with F diet promotes the accumulation of adipocytes in the bone marrow in female and male, and correction of nutrition from F to standard diet leads to a reduction in their number in the bone marrow compared to groups continuing feeding with high-energy diet.
Go to article

Abstract

Postoperative adhesion (POA) is a common and well-known complication with an estimated risk of 50-100%. The antioxidant effect of n-acetyl-cysteine (NAC) can increase intracellular glutathione levels, thereby reducing adhesion. This study was conducted to compare the outcomes of NAC nanoparticles (Nano-NAC) on intra-abdominal adhesion (IAA) after laparotomy in rat. A total of 25 male Wistar rats were randomized into five groups: 50 mg/kg Nano-NAC, 75 mg/kg Nano-NAC, 150 mg/kg Nano-NAC, NAC and control. During the surgical procedure, some sections (2×2cm) were collected through abdominal midline incision to ensure the infliction of peritoneal damage by a standard adhesion. Macroscopic evaluation was performed on the 14th and 28th day and blood samples were collected to evaluate the inflammatory factor (C-reactive protein) on days 0, 14 and 28. According to the serologic results (CRP test), C-reactive protein was at highest level in 150 mg/kg Nano-NAC and control groups and at lowest level in 50 mg/kg Nano-NAC and 75 mg/kg Nano-NAC groups (p<0.001). The macroscopic evaluation results showed that frequency of adhesion bands was significantly lower in 50 mg/kg Nano-NAC group than the control at the intervals. Results showed that the intraperitoneal administration of lower Nano-NAC dosages (50 and 75 mg/kg) had a major role in the management of postoperative inflammation. Nano-NAC administration was proved feasible, safe and effective in reduction of the C-reactive protein level.
Go to article

Abstract

The purpose of the study was to study the activity of the phytoestrogen genistein (GEN) act- ing on FSHR and LHR in rat ovaries with polycystic ovary syndrome (PCOS). Sixty rats were di- vided into six groups. Rats in the dose group received genistein at a concentration of either 5 (low genistein dose group, L-gen), 10 (middle genistein dose group, M-Gen) or 20 (high genistein dose group, H-Gen) mg per kg of body weight per day. Estrogen group (EG, received 0.5 mg/kg Dieth- ylstilbestrol). Concentration of sex hormones in serum was quantified by enzyme-linked immuno- sorbent assay (ELISA). Expressions of follicle-stimulating hormone receptor (FSHR) and lutein- izing hormone receptor (LHR) protein were determined by immunohistochemistry. Treatment with genistein resulted in a strong stimulation of the concentration of sex hormone in serum. The concentration of progesterone and FSH was significantly higher in H-Gen when compared to the PCOS model control group (MG) (P < 0.01). In contrast, the concentration of testosterone, LH and the ratio of LH/FSH decreased in GEN treatment groups compared to MG, the effect was statistically significant, tested by the ANOVA test (p<0.01). For hormone receptor activity, treat- ment with genistein resulted in an improvement of ovarian function with LHR protein expression being enhanced and FSHR protein expression being suppressed. Our results demonstrate that Genistein played a significant role in regulating FSH and LH receptor expression to improve perimenopausal ovarian and uterine function.
Go to article

Abstract

In this investigation, the effects of genistein (GEN) on the expression of steroidogenic genes such as steroidogenic acute regulatory protein (StAR), side-chain cleavage enzymes (P450scc) and cytochrome P450 aromatase (CYP19) were assessed. For this study, forty young female Sprague Dawley (SD) rats at aged 2-3 months (200±20 g) and forty aged female SD rats aged 10-12 months (490±20 g) were selected. Also, based on weight they were divided into a negative control group (NC), three different GEN dose groups, which received GEN of 15, 30, 60 mg/kg, and a positive control group (PC). The experiment lasted 30 days. Concentrations of serum hormones were determined by Enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions of StAR, P450scc and CYP19 were determined by Real-Time PCR and western blot techniques. It was observed that 30-60 mg/kg GEN could increase the expression of androgen generating key enzymes in the young rat ovary. GEN also significantly increased progesterone and E2 levels in the serum of aged rats and reduced the levels of LH and FSH in the serum of both young and aged rats. Compared with young rats, the effect of GEN on the ovary of aged rats was stronger and a lower dose of GEN (15 mg/kg) showed an obvious effect on these indicators. GEN influenced both estrogen level and indicators associated with estrogen and androgen transformation processes, which indicates that GEN can impair the growth and maturation of the ovary.
Go to article

This page uses 'cookies'. Learn more