Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

In general, currently employed vehicle classification algorithms based on the magnetic signature can distinguish among only a few vehicle classes. The work presents a new approach to this problem. A set of characteristic parameters measurable from the magnetic signature and limits of their uncertainty intervals are determined independently for each predefined class. The source of information on the vehicle parameters is its magnetic signature measured in a system that enables independent measurement of two signals, i.e. changes in the active and reactive component of the inductive loop impedance caused by a passing vehicle. These innovations result in high selective classification system, which utilizes over a dozen vehicle classes. The evaluation of the proposed approach was carried out for good vehicles consisting of 2-axle tractor and a 3-axle semi-trailer.
Go to article

Abstract

The work proposes a new method for vehicle classification, which allows treating vehicles uniformly at the stage of defining the vehicle classes, as well as during the classification itself and the assessment of its correctness. The sole source of information about a vehicle is its magnetic signature normalised with respect to the amplitude and duration. The proposed method allows defining a large number (even several thousand) of classes comprising vehicles whose magnetic signatures are similar according to the assumed criterion with precisely determined degree of similarity. The decision about the degree of similarity and, consequently, about the number of classes, is taken by a user depending on the classification purpose. An additional advantage of the proposed solution is the automated defining of vehicle classes for the given degree of similarity between signatures determined by a user. Thus the human factor, which plays a significant role in currently used methods, has been removed from the classification process at the stage of defining vehicle classes. The efficiency of the proposed approach to the vehicle classification problem was demonstrated on the basis of a large set of experimental data.
Go to article

Abstract

This paper presents a Kalman filter based method for diagnosing both parametric and catastrophic faults in analog circuits. Two major innovations are presented, i.e., the Kalman filter based technique, which can significantly improve the efficiency of diagnosing a fault through an iterative structure, and the Shannon entropy to mitigate the influence of component tolerance. Both these concepts help to achieve higher performance and lower testing cost while maintaining the circuit.s functionality. Our simulations demonstrate that using the Kalman filter based technique leads to good results of fault detection and fault location of analog circuits. Meanwhile, the parasitics, as a result of enhancing accessibility by adding test points, are reduced to minimum, that is, the data used for diagnosis is directly obtained from the system primary output pins in our method. The simulations also show that decision boundaries among faulty circuits have small variations over a wide range of noise-immunity requirements. In addition, experimental results show that the proposed method is superior to the test method based on the subband decomposition combined with coherence function, arisen recently.
Go to article

Abstract

The article is devoted to the method facilitating the diagnostics of dynamic faults in networks of interconnection in systems-on-chips. It shows how to reconstruct the erroneous test response sequence coming from the faulty connection based on the set of signatures obtained as a result of multiple compaction of this sequence in the MISR register with programmable feedback. The Chinese reminder theorem is used for this purpose. The article analyzes in detail the various hardware realizations of the discussed method. The testing time associated with each proposed solution was also estimated. Presented method can be used with any type of test sequence and test pattern generator. It is also easily scalable to any number of nets in the network of interconnections. Moreover, it supports finding a trade-off between area overhead and testing time.
Go to article

Abstract

This paper presents mechanical fault detection in squirrel cage induction motors (SCIMs) by means of two recent techniques. More precisely, we have analyzed the rolling element bearing (REB) faults in SCIM. Rolling element bearing faults constitute a major problem among different faults which cause catastrophic damage to rotating machinery. Thus early detection of REB faults in SCIMs is of crucial importance. Vibration analysis is among the key concepts for mechanical vibrations of rotating electrical machines. Today, there is massive competition between researchers in the diagnosis field. They all have as their aim to replace the vibration analysis technique. Among them, stator current analysis has become one of the most important subjects in the fault detection field. Motor current signature analysis (MCSA) has become popular for detection and localization of numerous faults. It is generally based on fast Fourier transform (FFT) of the stator current signal. We have detailed the analysis by means of MCSA-FFT, which is based on the stator current spectrum. Another goal in this work is the use of the discrete wavelet transform (DWT) technique in order to detect REB faults. In addition, a new indicator based on the MCSA-DWT technique has been developed in this study. This new indicator has the advantage of expressing itself in the quantity and quality form. The acquisition data are presented and a comparative study is carried out between these recent techniques in order to ensure a final decision. The proposed subject is examined experimentally using a 3 kW squirrel cage induction motor test bed.
Go to article

Abstract

This work is focused on the automatic recognition of environmental noise sources that affect humans’ health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore, although considering all the aforementioned noise sources, this paper especially focuses on improving the recognition of road noise events by taking advantage of the perceived noise differences along the road vehicle pass-by (which may be divided into different phases: approaching, passing and receding). To that effect, a hierarchical classification scheme that considers these phases independently has been implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%, which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are performed to compare the system performance with human recognition ability. The results reveal that, although an expert human listener can achieve higher recognition accuracy than the proposed system, the latter outperforms the non-trained listener in 10% in average.
Go to article

This page uses 'cookies'. Learn more