Search results

Filters

  • Journals

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

The paper analyzes a new concept of integration of combined cycle with the installation of supplementary firing. The whole system was enclosed by thermodynamic analysis, which consists of a gas-steam unit with triple-pressure heat recovery steam generator. The system uses a determined model of the gas turbine and the assumptions relating to the construction features of steam-water part were made. The proposed conception involves building of supplementary firing installation only on part of the exhaust stream leaving the gas turbine. In the proposed solution superheater was divided into two sections, one of which was located on the exhaust gases leaving the installation of supplementary firing. The paper presents the results of the analyses of which the main aim was to demonstrate the superiority of the new thermodynamic concept of the supplementary firing over the classical one. For this purpose a model of a system was built, in which it was possible to carry out simulations of the gradual transition from a classically understood supplementary firing to the supplementary firing completely modified. For building of a model the GateCycle™ software was used.
Go to article

Abstract

Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of 'zero-emission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.
Go to article

Abstract

The objective of the paper is to analyse thermodynamical and operational parameters of the supercritical power plant with reference conditions as well as following the introduction of the hybrid system incorporating ORC. In ORC the upper heat source is a stream of hot water from the system of heat recovery having temperature of 90 °C, which is additionally aided by heat from the bleeds of the steam turbine. Thermodynamical analysis of the supercritical plant with and without incorporation of ORC was accomplished using computational flow mechanics numerical codes. Investigated were six working fluids such as propane, isobutane, pentane, ethanol, R236ea and R245fa. In the course of calculations determined were primarily the increase of the unit power and efficiency for the reference case and that with the ORC.
Go to article

Abstract

Because the heat release of plutonium material, the composite structure is heated and the stress and strain of the composite structure will increase, which will affect the thermodynamic properties of the structure. The thermodynamic analysis of complex structures, which are composed of concentric structures of plutonium, beryllium, tungsten, explosives, and steel, was carried out. The results showed that when the structure is spherical, the temperature is higher than that of the ellipsoid structure. Stress of the elliptical structure is greater than the spherical structure. This study showed that the more flat the shell is, the greater the stress concentration point occurs at the long axis, and the maximum stress occurs at the beryllium layer. These conclusions provide theoretical support for the plutonium composite component testing.
Go to article

Abstract

The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Go to article

Abstract

In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.
Go to article

Abstract

In the paper the results of analysis of an integrated gasification combined cycle IGCC polygeneration system, of which the task is to produce both electricity and synthesis gas, are shown. Assuming the structure of the system and the power rating of a combined cycle, the consumption of the synthesis gas for chemical production makes it necessary to supplement the lack of synthesis gas used for electricity production with the natural gas. As a result a change of the composition of the fuel gas supplied to the gas turbine occurs. In the paper the influence of the change of gas composition on the gas turbine characteristics is shown. In the calculations of the gas turbine the own computational algorithm was used. During the study the influence of the change of composition of gaseous fuel on the characteristic quantities was examined. The calculations were realized for different cases of cooling of the gas turbine expander’s blades (constant cooling air mass flow, constant cooling air index, constant temperature of blade material). Subsequently, the influence of the degree of integration of the gas turbine with the air separation unit on the main characteristics was analyzed.
Go to article

This page uses 'cookies'. Learn more