Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 9
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Weld metal deposit (WMD) was carried out for standard MMA welding process. This welding method is still promising mainly due to the high amount of AF (acicular ferrite) and low amount of MAC (self-tempered martensite, retained austenite, carbide) phases in WMD. That structure corresponds with good impact toughness of welds at low temperature. Separate effect of these elements on the mechanical properties of welds is well known, but the combined effect of these alloy additions has not been analyzed so far. It was decided to check the total influence of nickel with a content between 1% to 3% and molybdenum with content from 0.1% up to 0.5%.
Przejdź do artykułu

Abstrakt

Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at – 60 °C. The effect of austenitizing temperature (850, 900 and 950°C) and ausferritizing time (5 - 180 min.) at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C) and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min.) of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The “process window” was calculated for the ADI characterized by high toughness corresponding to the EN-GJS800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.
Przejdź do artykułu

Abstrakt

The material selected for this investigation was low alloy steel weld metal deposit (WMD) after MAG welding with micro-jet cooling. The present investigation was aimed as the following tasks: analyze impact toughness of WMD in terms of micro-jet cooling parameters. Weld metal deposit (WMD) was first time carried out for MAG welding with micro-jet cooling of compressed air and gas mixture of argon and air. Until that moment only argon, helium and nitrogen and its gas mixture were tested for micro-jet cooling
Przejdź do artykułu

Abstrakt

The present work, presented the study of effect of different inoculants on impact toughness in High Chromium Cast Iron. The molds were pouring in industrial conditions and samples were tested in laboratory in Faculty of Foundry Engineering at AGH. Seven samples were tested - one reference sample, three with different addition of Fe-Ti, and three with different addition of Al. The samples were subjected to impact toughness on Charpy hammer and the hardness test. The presented investigations indicate that for the each inoculant there is an optimal addition at which the sample obtained the highest value of impact toughness. For the Fe-Ti it is 0.66% and for Al is 0.17%. Of all the examined inoculants best results were obtained at a dose of 0.66% Fe-Ti. Titanium is a well-known as a good modifier but very interesting results gives the aluminum. Comparing the results obtained for the Fe-Ti and Al can be seen that in the case of aluminum hardness is more stable. The hardness of all samples is around 40-45 HRC, which is not high for this type of cast iron. Therefore, in future studies it is planned to carry out the heat treatment procedure that may improves hardness.
Przejdź do artykułu

Abstrakt

The results of bearing capacity, deformability and fracture toughness of reinforced concrete beams with the external reinforcement in the form of steel cut and stretchy sheet, obtained due to the conducting of the experiment and mathematical simulation which were made of concrete of C40/50 class are given in the article. Mathematical simulation of beam structures is done on the basis of the deformation model which allows to conduct calculations of the unified methodological positions of different elements with diverse configuration of cross section and reinforcement as well as take into consideration elastic and plastic properties of concrete and reinforcement, assessing the actual stress-strain state of sections of reinforced concrete elements at different loading levels, including ultimate one. The deformation model is based on the actual diagrams use of concrete and reinforcement materials deformation and conditions of efforts balance in the normal section and hypothesis of flat sections. The theoretical value of bearing capacity and deformability, obtained as a result of the mathematical simulation was compared to the experimental data. The satisfactory coincidence of the mathematical calculation of bearing capacity, deformability, fracture toughness and experimental data gives an opportunity to use the algorithm not only for beam structures with bar reinforcement but also for beam structures with the external reinforcement in the form of steel cut and stretchy sheet.
Przejdź do artykułu

Abstrakt

The paper describes influence of rare earth metals (REMs) on G20Mn5 cast steel microstructure and mechanical properties. The cerium mixture of the following composition was used to modify cast steel: 49.8% Ce, 21.8% La, 17.1% Nd, 5,5% Pr and 5.35% of REMs. Cast steel was melted in industrial conditions. Two melts of non-modified and modified cast steel were made. Test ingots were subject to heat treatment by hardening (920°C/water) and tempering (720°C/air). Heat treatment processes were also performed in industrial conditions. After cutting flashes off samples of cast steel were collected with purpose to analyze chemical composition, a tensile test and impact toughness tests were conducted and microstructure was subject to observations. Modification with use of mischmetal did not cause significant changes in cast steel tensile strength and yield strength, while higher values were detected for fractures in the Charpy impact test, as they were twice as high as values for the data included in the PN-EN 10213:2008 standard. Observations performed by means of light and scanning microscopy proved occurrence of significant differences in grain dimensions and morphology of non-metallic inclusions. Adding REMs resulted in grain fragmentation and transformed inclusion shapes to rounded ones. Chemical composition analyses indicated that round inclusions in modified cast steel were generally oxysulphides containing cerium and lanthanum. In the paper the author proved positive influence of modification on G20Mn5 cast steel mechanical properties.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji