Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Keywords city ventilation

Abstract

Józefa Dietla street in Kraków has been constructed in the second half of the nineteenth century. It was a pioneering urban design solution, meant to act as a sort of ventilation duct for the city, so that its climate could be improved. An important element of this system of ventilating the city is the area currently occupied by a football pitch of the "Nadwiślan" sports club, which allows the breeze of the Vistula river into the city. This idea is evidence of the modern and forward thinking approach to urban planning in Kraków during those times. The role of Józefa Dietla street as a ventilation duct has currently been all but forgotten and is underappreciated despite the fact that the amount of air pollution in Kraków has greatly increased in comparison to the times when the street was being constructed. A measure of this disdain for the role that Józefa Dietla street and the area of the "Nadwiślan" play in keeping the sanitary conditions within the city at acceptable levels is the current layout of the area, which has significantly reduced the ventilating capacity of the street. The planned construction of a residential apartment building in place of the current football pitch will definitely hamper the capacity in which the street can be used for ventilation purposes. In this manner, the evidence of pro-ecological thinking of the urban planners of the XIX century is being wasted by their XXI century counterparts.
Go to article

Abstract

The frictional resistance coefficient of ventilation of a roadway in a coal mine is a very important technical parameter in the design and renovation of mine ventilation. Calculations based on empirical formulae and field tests to calculate the resistance coefficient have limitations. An inversion method to calculate the mine ventilation resistance coefficient by using a few representative data of air flows and node pressures is proposed in this study. The mathematical model of the inversion method is developed based on the principle of least squares. The measured pressure and the calculated pressure deviation along with the measured flow and the calculated flow deviation are considered while defining the objective function, which also includes the node pressure, the air flow, and the ventilation resistance coefficient range constraints. The ventilation resistance coefficient inversion problem was converted to a nonlinear optimisation problem through the development of the model. A genetic algorithm (GA) was adopted to solve the ventilation resistance coefficient inversion problem. The GA was improved to enhance the global and the local search abilities of the algorithm for the ventilation resistance coefficient inversion problem.
Go to article

Abstract

Mining ventilation should ensure in the excavations required amount of air on the basis of determined regulations and to mitigate various hazards. These excavations are mainly: longwalls, function chambers and headings. Considering the financial aspect, the costs of air distribution should be as low as possible and due to mentioned above issues the optimal air distribution should be taken into account including the workers safety and minimization of the total output power of main ventilation fans. The optimal air distribution is when the airflow rate in the mining areas and functional chambers are suitable to the existing hazards, and the total output power of the main fans is at a minimal but sufficient rate. Restructuring of mining sector in Poland is usually connected with the connection of different mines. Hence, dependent air streams (dependent air stream flows through a branch which links two intake air streams or two return air streams) exist in ventilation networks of connected mines. The zones of intake air and return air include these air streams. There are also particular air streams in the networks which connect subnetworks of main ventilation fans. They enable to direct return air to specified fans and to obtain different airflows in return zone. The new method of decreasing the costs of ventilation is presented in the article. The method allows to determine the optimal parameters of main ventilation fans (fan pressure and air quantity) and optimal air distribution can be achieved as a result. Then the total output power of the fans is the lowest which makes the reduction of costs of mine ventilation. The new method was applied for selected ventilation network. For positive regulation (by means of the stoppings) the optimal air distribution was achieved when the total output power of the fans was 253.311 kW and for most energy-intensive air distribution it was 409.893 kW. The difference between these cases showed the difference in annual energy consumption which was 1 714 MWh what was related to annual costs of fan work equaled 245 102 Euro. Similar values for negative regulation (by means of auxiliary fans) were: the total output power of the fans 203.359 kW (optimal condition) and 362.405 kW (most energy-intensive condition). The difference of annual energy consumption was 1 742 MWh and annual difference of costs was 249 106 Euro. The differences between optimal airflows considering positive and negative regulations were: the total output power of fans 49.952 kW, annual energy consumption 547 MWh, annual costs 78 217 Euro.
Go to article

Abstract

A plenum window with incorporation of Helmholtz resonators in between two glass panes was tested in a reverberation room. The effects of jagged flap on reducing strength of diffracted sound was also investigated in the present studies where white, traffic and construction noises were examined during each set of experiment. When the noise source was located at the central line of the plenum window, the plenum window with Helmholtz resonators was able to mitigate 8.5 dBA, 8.9 dBA and 8.2 dBA of white, traffic and construction noises, respectively, compared with the case of without window. These amounts of noises that attenuated by the plenum window were slightly higher than the case where noise source was diverged 30º away from the plenum window. The effects of jagged flaps on the acoustical performance of the plenum window were negligible. The Helmholtz resonators had the best performance in the frequency region between 900 Hz to 1300 Hz where in this frequency range, the plenum window with Helmholtz resonators was able to attenuate additional 1.7 dBA, 1.9 dBA and 1.6 dBA of white, traffic and construction noises, respectively, compared with the case of without resonators.
Go to article

Abstract

Mechanical ventilation (MV) is a supportive and life-saving therapy, however, it can cause ventilator-induced lung injury as a common complication. Thus, recruitment manoeuvres (RM) are applied to open the collapsed alveoli to ensure sufficient alveolar surface area for gas exchange. In the light of the fact that positive pressure ventilation is currently the standard treat- ment for improving pulmonary function, extrathoracic negative pressure is considered as an alter- native form of respiratory support. The aim of this study was to estimate the proinflammatory and oxidative response during MV and lung injury as well as the response after RM. All studied parameters were assessed at the following time points: T1-spontaneous breathing, T2- MV, T3- lung injury, T4 –RM. During MV (T2) elastase, MPO, ALP release, nitrite and superoxide generation significantly increased, whereas in later measurements a decrease in these values was noted. The MDA plasma concentration significantly (p<0.05) increased at T2, reaching a level of 13.30±0.87 nmol/ml; at other time points the values obtained were similar to the baseline value of 9.94±0.94 nmol/ml, whereas a gradual decrease in SOD activity at time T2-T4 points in comparison with the baseline value was found. During the study both neutrophil activity and oxi- dative stress indicate exacerbated response after MV and lung injury by bronchoalveolar lavage; however, extrathoracic negative pressure system as the MR ameliorates damaging changes which could further lead to serious lung injury.
Go to article

Abstract

The paper shows the usefulness of the lung mechanical model for time and frequency characteristics reconstruction proper for the mechanics of an adult human respiratory system in its various regimes of work. The complex set-up for measurements of human respiratory system mechanics is presented. Two separate scenarios were created, firstly, the mechanical model was examined using standard mechanical ventilation routine with embedded Interrupter Technique and then the Optimized Ventilator Waveform technique was tested. An analysis of experimental results is presented, as well as an outline of the issues and problems revealed during investigations.
Go to article

Abstract

Problems associated with designing silencers are presented. Results of direct tests of silencers for cooperation with systems of axial fans, as well as results of numerical tests of a two stage acoustic silencer, are given. The numerical tests enabled determining the distribution of acoustic field inside the silencer and in the surrounding area. In those tests A sound insertion losses for different variants of installation inside the silencer, as well as for two different types of absorbing material used to fill the silencer walls, were determined. Impact of design features of silencers on effectiveness of noise reduction is described. Also, a technical sketch of a universal silencer with significant noise reduction (DipS = 39:1 dB) which can be successfully used in many ventilation systems is presented
Go to article

Abstract

Postharvest processing of grain is an important step in the overall grain production process. It makes possible not only quantitative and qualitative preservation of the harvest, but also ensures maximum profit from its sale at the most favorable market conditions. Convective heat treatment (drying, cooling) guarantees commercial harvest conservation, prevents its loss, and in some cases improves the quality of the finished product. The necessity of intensification and automation of technological processes of postharvest grain processing requires the development of methods of mathematical modeling of energy-intensive processes of convective heat treatment. The determination and substantiation of optimum modes and parameters of equipment operation to ensure the preservation of grain quality is possible only when applying mathematical modeling techniques. In this work, a mathematical model of particulate material drying is presented through a system of differential equations in partial derivatives of which the variable in time and space relationship between heat and mass transfer processes in the material and a drying agent is reflected. The aim of the research was to determine the dynamics of the interrelated fields of unsteady temperature and moisture content of the material and the drying agent on the basis of mathematical models of heat and mass transfer in the layer of particulate material in convective heat approach or heat retraction. The implementation of the mathematical model proposed in the standard mathematical set allows analyzing efficiency of machines and equipment for the convective heat treatment of particulate agricultural materials in a dense layer, according the determinant technological parameters and operating modes.
Go to article

Abstract

This paper describes the concept of controlling the advancement speed of the shearer, the objective of which is to eliminate switching the devices off to the devices in the longwall and in the adjacent galleries. This is connected with the threshold limit value of 2% for the methane concentration in the air stream flowing out from the longwall heading, or 1% methane in the air flowing to the longwall. Equations were formulated which represent the emission of methane from the mined body of coal in the longwall and from the winnings on the conveyors in order to develop the numerical procedures enabling a computer simulation of the mining process with a longwall shearer and haulage of the winnings. The distribution model of air, methane and firedamp, and the model of the goaf and a methanometry method which already exist in the Ventgraph-Plus programme, and the model of the methane emission from the mined longwall body of coal, together with the model of the methane emission from the winnings on conveyors and the model of the logic circuit to calculate the required advancement speed of the shearer together all form a set that enables simulations of the control used for a longwall shearer in the mining process. This simulation provides a means for making a comparison of the output of the mining in the case of work using a control system for the speed advancement of the shearer and the mining performance without this circuit in a situation when switching the devices off occurs as a consequence of exceeding the 2% threshold limit value of the methane concentration. The algorithm to control a shearer developed for a computer simulation considers a simpler case, where the logic circuit only employs the methane concentration signal from a methane detector situated in the longwall gallery close to the longwall outlet.
Go to article

Abstract

A complex model of mechanically ventilated ARDS lungs is proposed in the paper. This analogue is based on a combination of four components that describe breathing mechanics: morphology, mechanical properties of surfactant, tissue and chest wall characteristics. Physical-mathematical formulas attained from experimental data have been translated into their electrical equivalents and implemented in MultiSim software. To examine the adequacy of the forward model to the properties and behaviour of mechanically ventilated lungs in patients with ARDS symptoms, several computer simulations have been performed and reported in the paper. Inhomogeneous characteristics observed in the physical properties of ARDS lungs were mapped in a multi-lobe model and the measured outputs were compared with the data from physiological reports. In this way clinicians and scientists can obtain the knowledge on the moment of airway zone reopening/closure expressed as a function of pressure, volume or even time. In the paper, these trends were assessed for inhomogeneous distributions (proper for ARDS) of surfactant properties and airway geometry in consecutive lung lobes. The proposed model enables monitoring of temporal alveolar dynamics in successive lobes as well as those occurring at a higher level of lung structure organization, i.e. in a point P0 which can be used for collection of respiratory data during indirect management of recruitment/de-recruitment processes in ARDS lungs. The complex model and synthetic data generated for various parametrization scenarios make possible prospective studies on designing an indirect mode of alveolar zone management, i.e. with
Go to article

This page uses 'cookies'. Learn more