Applied sciences

Advances in Geodesy and Geoinformation

Content

Geodesy and Cartography | 2015 | vol. 64 | No 1

Download PDF Download RIS Download Bibtex

Abstract

The paper presents the capability of applying selected modern remote sensing methods based on commonly available high spatial resolution MODIS images to fog and low layer clouds detection. Single spectral channel images, differential images and selected color compositions are analyzed for distinguishing the areas of the phenomena occurrence. Their internal structure and fog/cloud particles properties are assessed using brightness temperature and reflectance diagrams.
Go to article

Authors and Affiliations

Karolina Krawczyk
Janusz Jasiński
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the problem of the automatic distortion removal from images acquired with non-metric SLR camera equipped with prime lenses. From the photogrammetric point of view the following question arises: is the accuracy of distortion control data provided by the manufacturer for a certain lens model (not item) sufficient in order to achieve demanded accuracy? In order to obtain the reliable answer to the aforementioned problem the two kinds of tests were carried out for three lens models. Firstly the multi-variant camera calibration was conducted using the software providing full accuracy analysis. Secondly the accuracy analysis using check points took place. The check points were measured in the images resampled based on estimated distortion model or in distortion-free images simply acquired in the automatic distortion removal mode. The extensive conclusions regarding application of each calibration approach in practice are given. Finally the rules of applying automatic distortion removal in photogrammetric measurements are suggested
Go to article

Authors and Affiliations

Jakub Kolecki
Antoni Rzonca
Download PDF Download RIS Download Bibtex

Abstract

The Open Skies Treaty has been a peace-building instrument between North American and European nations for over two decades. This agreement is based on the possibility for each country-signatory of the Treaty to independently conduct observation flights and obtain aerial imagery data of the territories of other Treaty States-Parties. This imagery data was originally acquired only using traditional photographic film cameras. Together with the rapid development and advancement of digital sensor technologies, the logical step forward was to amend the Treaty provisions to allow for the use of these types of sensors during observation missions. This paper describes this transition process and highlights a number of technical problems which needed to be addressed by experts working within the Open Skies Consultative Commission workgroups.
Go to article

Authors and Affiliations

Agata Orych
Download PDF Download RIS Download Bibtex

Abstract

The coastal zone and estuaries of Quang Ninh and Hai Phong have great potential not only for economic development but also for protection and conservation of biodiversity and ecosystem. Nowadays, due to industrial, agricultural and anthropogenic activities signs of water pollution in the region have been found. The level of surface water pollution can be determined by traditional methods through observatory stations. However, a traditional approach to determine water contamination is discontinuous, and thereby makes pollution assessment of the entire estuary very difficult. Nowadays, remote sensing technology has been developed and widely applied in many fields, for instance, in monitoring water environments. Remote sensing data combined with information from in-situ observations allow for extraction of polluted components in water and accurate measurements of pollution level in the large regions ensuring objectivity. According to results obtained from Spot-5 imagery of Quang Ninh and Hai Phong, the extracted pollution components, like BOD, COD and TSS can be determined with the root mean square error, the absolute mean error and the absolute mean percentage error (%): ±4.37 (mg/l) 3.86 (mg/l), 27%; ±55.32 (mg/l), 48.30 (mg/l), 14%; and ±32.90 (mg/l), 23.38 (mg/l), 28%; respectively. Obtained outcomes guarantee objectivity in assessing water contaminant levels in the investigated regions and show the advantages of remote sensing applications in Resource and Environmental Monitoring in relation to Water – Air – Land.
Go to article

Authors and Affiliations

Luong Chinh Ke
Ho Thi Van Trang
Vu Huu Liem
Tran Ngoc Tuong
Pham Thi Duyen
Download PDF Download RIS Download Bibtex

Abstract

Image sequences, in particular digital video sequences, are characterised by the features which result in their high potential as measurement data. However, as early as at the stage of visual assessment of digital film images, originating, in particular, from amateur cameras, occurrence of some deformations may be observed, which may highly influence the results of measurements performed using these images; such deformations differ from deformations occurred in the case of static photographic images. It results both, by the method of image recording, using an electronic shutter and interlaced or progressive scanning, as well as the method of file recording and compression. It is worth to notice the systematic nature of such deformations, which highly depend on mutual motions of a camera and recorded objects. The objective of presented research works was to develop the mathematical description of image deformations, as a function of motion parameters. This would allow for adaptation of the camera calibration process to the demands of sequential imaging, as well as for modification of algorithms of measurements using self-calibration, and, as a result, minimisation of deformations. Another objective was to analyse the influence of deformations, typical for digital film images, on the results of measurements performed using these images, by means of series of experiments, which were based on multiple calibration of static and a moving camera, also with the use of a spatial test field. The first part was made by developing formulas based on some geometric relations, using some simplifications. On the stage of experimental research a certain degree of compatibility of experimental results and theoretical assumptions were confirmed.
Go to article

Authors and Affiliations

Tomasz Markowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate the possible use of geoinformatics tools and generally available geodata for mapping land cover/use on the reclaimed areas. The choice of subject was dictated by the growing number of such areas and the related problem of their restoration. Modern technology, including GIS, photogrammetry and remote sensing are relevant in assessing the reclamation effects and monitoring of changes taking place on such sites. The LULC classes mapping, supported with thorough knowledge of the operator, is useful tool for the proper reclamation process evaluation. The study was performed for two post-mine sites: reclaimed external spoil heap of the sulfur mine Machów and areas after exploitation of sulfur mine Jeziórko, which are located in the Tarnobrzeski district. The research materials consisted of aerial orthophotos, which were the basis of on-screen vectorization; LANDSAT satellite images, which were used in the pixel and object based classification; and the CORINE Land Cover database as a general reference to the global maps of land cover and land use.
Go to article

Authors and Affiliations

Paweł Hawryło
Marta Szostak
Piotr Wężyk
Marcin Pietrzykowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland). It was a unique refuge habitat – Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project). Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap “Fryderyk” was determined. The results demonstrated a gradual succession of greenery on soil heap. In 1947, 84% of this area was covered by low vegetation. Tree expansion was proceeding in the westerly and northwest direction. In 2011 this canopy layer covered almost 50% of the research area. Parameters such as height of vegetation, crowns length and cover density were calculated by an airborne laser scanning data. These analyses indicated significant diversity in vertical and horizontal structures of vegetation. The study presents some capacities to use airborne laser scanning for an impartial evaluation of the structure of vegetation.
Go to article

Authors and Affiliations

Marta Szostak
Piotr Wężyk
Marek Pająk
Paweł Haryło
Marek Lisańczuk
Download PDF Download RIS Download Bibtex

Abstract

Climate atlases summarize large sets of quantitative and qualitative data and are results of complex analytical cartographic work. These special geographical publications summarize long term meteorological observations, provide maps and figures which characterise different climate elements. Visual information is supplemented with explanatory texts. A lot of information on short and long term changes of climate elements were provided in published Lithuanian atlases (Atlas of Lithuanian SDR, 1981; Climate Atlas of Lithuania, 2013), as well as in prepared but unpublished Lithuanian Atlas (1989) and in upcoming new national atlas publications (National Atlas of Lithuania. 1 st part, 2014). Climate atlases has to be constantly updated to be relevant and to describe current climate conditions. Comprehensive indicators of Lithuanian climate are provided in different cartographic publications. Different time periods, various data sets and diverse cartographic data analysis tools and visualisation methods were used in these different publications.
Go to article

Authors and Affiliations

Donatas Valiukas
Audronė Galvonaitė
Algimantas Česnulevičius
Download PDF Download RIS Download Bibtex

Abstract

Efficient, accurate data collection from imagery is the key to an economical generation of useful geospatial products. Incremental developments of traditional geospatial data collection and the arrival of new image data sources cause new software packages to be created and existing ones to be adjusted to enable such data to be processed. In the past, BAE Systems’ digital photogrammetric workstation, SOCET SET ® , met fi n de siècle expectations in data processing and feature extraction. Its successor, SOCET GXP ® , addresses today’s photogrammetric requirements and new data sources. SOCET GXP is an advanced workstation for mapping and photogrammetric tasks, with automated functionality for triangulation, Digital Elevation Model (DEM) extraction, orthorectification and mosaicking, feature extraction and creation of 3-D models with texturing. BAE Systems continues to add sensor models to accommodate new image sources, in response to customer demand. New capabilities added in the latest version of SOCET GXP facilitate modeling, visualization and analysis of 3-D features.
Go to article

Authors and Affiliations

Stewart Walker
Arleta Pietrzak
Download PDF Download RIS Download Bibtex

Abstract

The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.
Go to article

Authors and Affiliations

Paweł Hawryło
Marta Szostak
Piotr Wężyk
Wojciech Krzaklewski
Marek Pająk
Marcin Pierzchalski
Piotr Szwed
Michał Ratajczak

Instructions for authors

The Advances in Geodesy and Geoinformation accepts a wide range of papers including original research papers, original short communication papers, review articles and symposium pieces. Details of submission are provided below. Please, note, that at the submission stage, the author(s) ensure(s) that the submitted work will not be published elsewhere in any language without the consent of the copyright owners. All co-authors also agree on the publication ethics statement.

For all parties involved in the act of publishing (the author, the journal editor(s), the peer reviewer and the publisher) it is necessary to agree upon standards of expected ethical behavior. The ethics statements for Advances in Geodesy and Geoinformation are based on the Committee on Publication Ethics (COPE) Best Practice Guidelines for Journal Editors (https://publicationethics.org/resources/guidelines ).


TYPES OF MANUSCRIPTS

Original Research papers:

Research papers can have 8000 words in length, although longer articles will be accepted on an occasional basis if the topic demands this length of treatment.

Original Short communication papers:

Short communication papers can have 2500 words as a maximum and contain at most 1 table and 3 figures. Such a note is technical and well-focused, for example illustrating a new technique, describing a well worked-out case study or a specific new algorithm.

Original research and short communications papers should contain the following sections: Abstract (max. of 250 words), Introduction, Data used and methods applied, Results, Discussion, Conclusions, Acknowledgments, References.

Review article:

The journal also considers short reviews (not exceeding 12 pages in print) intended to debate recent advances in rapidly developing fields that are within its scope. Such articles may have ample references. Reviews should contain the following sections: Abstract (max. of 250 words), Introduction, Topics (with headings and subheadings), Conclusions and Outlook, Acknowledgments, References

Symposium pieces:

Symposium pieces describe a research symposium or seminar and present the topic covered in the form of a news brief, opinion piece, or mini-review. A news brief summarizes a few talks on the same general topic or issues at a given symposium. This can include a summary of the discussion that followed the symposium or the significance of the talks at a large symposia to a particular field. It is important to indicate the main point of the symposium.

An opinion piece discusses the personal perspectives after a given symposium, including an analysis of the symposium and how this affected the author.

A mini-review can be based on a theme from a given symposium. This may require the author(s) to review articles written by a speaker at that symposium.

These articles should be no more than 3,000 words. All symposium pieces should include the following sections: Abstract (max. of 250 words), Introduction, Topics (with headings and subheadings) [specifically required for a mini-review], Conclusions and Outlook, References


LEGAL REQUIREMENTS

The author(s) guarantee(s) that the manuscript will not be published elsewhere in any language without the consent of the copyright owners, that the rights of the third parties will not be violated, and that the publisher will not held legally responsible should there be any claims for compensation.

Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.


ETHICAL RESPONSIBILITIES OF AUTHORS

Submission of the manuscript implies: that the work has not been published before (except in form of an abstract or as a part of a published lecture, review or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institution where the work was carried out.

In case the manuscript has more than one author its submission should include the list specifying contribution of each author to the manuscript with indicating who is the author of the concept, assumptions, research methodology, data processing. Major responsibility is on the corresponding author.

The Editor will counteract in Advances in Geodesy and Geoinformation against Ghostwriting, i.e. when someone substantially contributed to the preparation of the manuscript but has neither been included to the list of authors nor his role is mentioned in the acknowledgements as well as Ghost authorship, i.e. when the author/co-author did not contribute to the manuscript or his contribution is negligible. Any detected case of Ghostwriting and Ghost authorship will be exposed and the appropriate subjects, i.e. employers, scientific organizations, associations of editors etc., will be informed.


MANUSCRIPT SUBMISSION

The manuscripts are submitted online via https://www.editorialsystem.com/agg/ and should be submitted in Word. Please, do not exceed the number of words intended to a specific submission. Please, count the number of words before submitting, with abstract, acknowledgements and references excluded.

Names of authors and their affiliation should be removed from the manuscripts for the review process in order to have a fair evaluation of their manuscript. All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf in all matters pertaining to publication. The Corresponding Author is responsible for informing the coauthors of the manuscript status throughout the submission, review, and production process. The editorial system requires: the name(s) of the author(s), the name(s) and address(es) of the affiliation(s) of the author(s), the e-mail address of the corresponding author, the 16-digit ORCID number of the author(s). The corresponding author is required to provide his/her ORCID number. ORCID numbers of co-authors are not necessary, but advised.

Manuscript preparation

Manuscripts should be typed in single-line spacing throughout on the A4 sheet with 2.5 cm margins. Use plain 11-point Times Roman font for text, italics for textual emphasis, bold for mathematical vectors.

1. Abstract: The paper must be preceded by a sufficiently informative abstract presenting the most important results and conclusions. It should not be longer than 250 words and should not contain any unexplained abbreviations and unspecified references.

2. Keywords: Three to five keywords should be supplied. These are used for indexing purposes.

3. Introduction: It should explicitly state the purpose of the investigation and give a short review of the pertinent literature.

4. Main text: It should include all methods and input data (working details must be given concisely; well-known operations should not be described in details); results presented in tabular or graph form, with appropriate statistical evaluation, discussion of results - statement of conclusions drawn from the work and conclusions.

5. Acknowledgements: Please, include all institutions, names or numbers of grants that require acknowledgement. The names of funding organizations or institutions providing data should be given in full. This information is mandatory for all submitted papers.

6. Author Contributions: All authors contributing to the paper need to have their role assigned.

7. Data availability: Indicate where to download the data you used and how they can be accessed. Are your final results available anywhere?

8. References: The list of references should be prepared in alphabetical order and should only include works that are cited in the text and that have been published or accepted for publication. Personal communications could only be mentioned in the text. References in the text, should be cited by author(s) last name and year: e.g. (Beutler, 2003a), (Featherstone and Kirby, 2000), (Schwarz et al., 1990), (Sjöberg et al., 2000; Strykowski, 2001b; 2002). The details on the reference list preparation is provided below.

9. Formulae and symbols: They must be written legibly and will be typeset in italics. One-layer indexing is preferable. Numbering of formulae, if necessary should be given in brackets fitted to the right margin. use the equation editor or MathType for equations

10. Illustrations and tables: All figures (photographs, graphs or diagrams) and tables should be cited in the text and numbered consecutively throughout. Lowercase roman letters should identify figure parts. Figure legends must be brief and must contain self-sufficient explanations of the illustrations. Each table should have a title and a legend explaining any abbreviation used in that table. Tables and illustrations have to be placed in the text and send as separate files.

11. Units: SI units must be used.

12. Short title: Please, include a running head consisting of at most 60 characters. This concise banner represents the title of the article and must be submitted by the author(s).

Proofreading

Proofreading is the responsibility of the author. Corrections should be clear; standard correction marks should be used. Corrections that lead to a change in the page layout should be avoided. The author is entitled to formal corrections only. Substantial changes in content, e.g. new results, corrected values, title and authorship are not allowed without the approval of the editor. In such case please contact the Editor-in-chief before returning the proofs.

Reference list

a. Journal Article (one author)

Nikora, V. (2006). Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophysica, 55(1), 3-10. DOI: 10.2478/s11600-006-0043-6.

b. Journal Article (two or more authors)

Cudak, M. and Karcz J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chem. Pap. 60(5), 375-380. DOI: 10.2478/s11696-006-0068-y.

c. Journal article from an online database

Czajgucki Z., Zimecki M. & Andruszkiewicz R. (2006, December). The immunoregulatory effects of edeine analogues in mice [Abstract]. Cell. Mol. Biol. Lett. 12(3), 149-161. Retrieved December 6.

d. Book (one author)

Baxter, R. (1982). Exactly Solvable Models in Statistical Mechanics. New York: Academic Press.

e. Book (two or more authors)

Kleiner, F.S., Mamiya C.J. and Tansey R.G. (2001). Gardner’s art through the ages (11th ed.). Fort Worth, USA: Harcourt College Publishers.

f. Book chapter or article in an edited book

Roll, W.P. (1976). ESP and memory. In J.M.O. Wheatley and H.L. Edge (Eds.), . (pp. 154-184). Springfield, IL: American Psychiatric Press.

g. Proceedings from a conference

Field, G. (2001). Rethinking reference rethought. In Revelling in Reference: Reference and Information Services Section Symposium, 12-14 October 2001 (pp. 59-64). Melbourne, Victoria, Australia: Australian Library and Information Association.

h. Online document

Johnson, A. (2000). Abstract Computing Machines. Springer Berlin Heidelberg. Retrieved March 30, 2006, from SpringerLink http://springerlink.com/content/w25154. DOI: 10.1007/b138965.

i. Report

Osgood, D. W., and Wilson, J. K. (1990). Covariation of adolescent health problems. Lincoln: University of Nebraska. (NTIS No. PB 91-154 377/AS).

j. Government publication

Ministerial Council on Drug Strategy. (1997). The national drug strategy: Mapping the future. Canberra: Australian Government Publishing Service.

Charges

Advances in Geodesy and Geoinformation is published in Open Access journal with all content available with no charge in full text version. This means that all articles are available on the internet to all users immediately upon publication free of charge for the readers.



Submit your article

Publication Ethics Policy


ETHIC POLICY

Editor Responsibilities

The editor of Advances in Geodesy and Geoinformation is guided by COPE’s Guidelines ( https://publicationethics.org/resources/guidelines) for Retracting Articles when considering retracting, issuing expressions of concern about, and issuing corrections pertaining to articles that have been published in the journal. The editor evaluates manuscripts for intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the author(s). The editor do not disclose any information about a manuscript under consideration to anyone other than the author(s), reviewers and potential reviewers, and in some instances the editorial board members, as appropriate. The editor seeks so ensure a fair and appropriate peer review process. Editors recuse themselves (i.e. ask a co-editor, associate editor or other member of the editorial board instead to review and consider) from considering manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or (possibly) institutions connected to the papers. Editors require all contributors to disclose relevant competing interests and publish corrections if competing interests are revealed after publication. If needed, other appropriate action should be taken, such as the publication of a retraction or expression of concern.

Reviewer Responsibilities


Peer review assists the editor in making editorial decisions and, through the editorial communication with the author, may also assist the author in improving the manuscript. Any invited referee who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should immediately notify the editor so that alternative reviewers can be contacted.

Any manuscripts received for review is treated as confidential documents. They must not be shown to or discussed with others except if authorized by the editor. Reviews should be conducted objectively. Personal criticism of the author is inacceptable. Referees should express their views clearly with appropriate supporting arguments.

Reviewers should identify relevant published work that has not been cited by the authors. Any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. A reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published data of which they have personal knowledge.

Privileged information or ideas obtained through peer review is kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the submission.

Author Responsibilities

Authors reporting results of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the manuscript. A paper should contain sufficient detail and references to permit others to replicate the work. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable.

The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted.
An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Parallel submission of the same manuscript to more than one journal constitutes unethical publishing behavior and is unacceptable.

Proper acknowledgment of the work of others must always be given. Authors should also cite publications that have been influential in determining the nature of the reported work.

Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. All those who have made significant contributions should be listed as co-authors. Where there are others who have participated in certain substantive aspects of the research project, they should be named in an Acknowledgement section.

The corresponding author should ensure that all appropriate co-authors (according to the above definition) and no inappropriate co-authors are included in the author list of the manuscript, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.

If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the authors must clearly identify these in the manuscript.

All authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or their interpretation in the manuscript. All sources of financial support for the project should be disclosed.

When an author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal’s editor or publisher and cooperate with them to either retract the paper or to publish an appropriate erratum.

Publisher’s Confirmation

In cases of alleged or proven scientific misconduct, fraudulent publication or plagiarism the publisher, in close collaboration with the editors, will take all appropriate measures to clarify the situation and to amend the article in question. This includes the prompt publication

Peer-review Procedure

MANUSCRIPT REVIEW PROCEDURE

The editor of a peer-reviewed journal is responsible for deciding which articles submitted to the journal should be published, and, moreover, is accountable for everything published in the journal. In making these decisions, the editor may be guided by the policies of the journal’s editorial board as well as by legal requirements regarding libel, copyright infringement and plagiarism. The editor may confer with other editors or reviewers when making publication decisions. The editor maintain the integrity of the academic record, preclude business needs from compromising intellectual and ethical standards, and always be willing to publish corrections, clarifications, retractions and apologies when needed. The editor evaluate manuscripts for intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the author(s). The editor do not disclose any information about a manuscript under consideration to anyone other than the author(s), reviewers and potential reviewers, and in some instances the editorial board members, as appropriate.

The editor is guided by COPE’s Guidelines ( https://publicationethics.org/resources/guidelines) for Retracting Articles when considering retracting, issuing expressions of concern about, and issuing corrections pertaining to articles that have been published in Advances in Geodesy and Geoinformation.

Peer review assists the editor in making editorial decisions and, through the editorial communication with the author, may also assist the author in improving the manuscript.

Any manuscripts received for review is treated as confidential documents. They must not be shown to or discussed with others except if authorized by the editor.

Manuscript evaluations are assigned one of four outcomes: Accept without changes, accept after changes suggested by reviewer, rate manuscript once again after major changes and another review, reject, withdraw.

Manuscripts requiring minor revision (accept after changes suggested by reviewer) not require a second review. All manuscripts receiving a "Rate manuscript once again after major changes and another review " evaluation must be subjected to a second review. Rejected manuscripts are given no further consideration. Normally, manuscripts that receive a "Rate manuscript once again after major changes and another review " decision have only one additional chance for revision and the revised version should be uploaded to the Editorial System within six weeks. If the author(s) failed to make satisfactory changes, the manuscript is rejected. On acceptance, manuscripts are subject to editorial amendment to suit house style. The article should be withdraw due to technical reason (e.g. names of authors are placed in the text, lack of references, or inappropriate structure of the text) or plagiarism.

Reviewers

Reviewers list 2022

Prof. Cüneyt Aydın, Yildiz Technical University, Turkey
Dr. Agnieszka Bieda, AGH University of Science and Technology, Poland
Prof. Elzbieta Bielecka, Military University of Technology, Poland
Dr. Monika Biryło, University of Warmia and Mazury in Olsztyn, Poland
Dr. Andrzej Bobojć, University of Warmia and Mazury in Olsztyn, Poland
Dr. Piotr Bożek, University of Agriculture in Krakow, Poland
Dr. Jerzy Chmiel, Warsaw University of Technology, Poland
Prof. Kazimierz Ćmielewski, Wrocław University of Environmental and Life Sciences, Poland
Dr. Bahattin Erdogan, Yildiz Technical University, Turkey
Prof. Juraj Gasinec, Technical University of Kosice, Slovakia
Dr. Volodymyr Hlotov, Lviv Polytechnic National University, Ukraine
Dr. Tymoteusz Horbiński, Institute of Physical Geography and Environmental Planning, Poland
Dr. Oleksandra Hulko, Lviv Polytechnic National University, Ukraine
Dr. Joanna Janicka, University of Warmia and Mazury in Olsztyn, Poland
Dr. Izabela Jaśkiewicz-Proć, KGHM CUPRUM sp. z o.o. – CBR, Poland
Prof. Roman Józef Kadaj, Rzeszów University of Technology, Poland
Dr. Jānis Kaminskis, Riga Technical University, Latvia
Dr. Yulia Кhavar, Lviv Polytechnic National University, Ukraine
Dr. Jolanta Korycka-Skorupa, Warsaw University, Poland
Prof. Wolfgang Kresse, University of Applied Sciences Neubrandenburg, Germany
Prof. Eugene Levin, Michigan Technological University, United States
Dr. Tomasz Lipecki, AGH University of Science and Technology, Poland
Dr. Tomasz Liwosz, Warsaw University of Technology, Poland
Prof. Radovan Machotka, Brno University of Technology, Czech Republic
Prof. Šárka Mayerová, Faculty of Military Technology University of Defence, Brno, Czech Republic
Dr. Bartosz Mitka, University of Agriculture in Krakow, Poland
Prof. Marek Mróz, University of Warmia and Mazury in Olsztyn, Poland
Prof. Maria Mrówczyńska, Architecture and Environmental Engineering University of Zielona Gora, Poland
Dr. Tomasz Noszczyk, University of Agriculture in Krakow, Poland
Dr. Agata Orych, Military University of Technology, Poland
Dr. Joanna Pluto-Kossakowska, Warsaw University of Technology, Poland
Prof. Krystian Pyka, AGH University of Science and Technology, Poland
Dr. Umberto Robustelli, University of Naples "Parthenope", Italy
Prof. Zofia Rzepecka, University of Warmia and Mazury in Olsztyn, Poland
Dr. Vira Sai, Lviv Polytechnic National University, Ukraine
Dr. D. Ugur Sanli, Yildiz Technical University, Turkey
Dr. Mahmut Oğuz Selbesoğlu, Istanbul Technical University, Turkey
Prof. Izabela Skrzypczak, Rzeszów University of Technology, Poland
Prof. Viktor Sidorenko, Kryvyi Rih National University, Geodesy Department, Ukraine
Dr. Katarzyna Stępniak, University of Warmia and Mazury in Olsztyn, Poland
Dr. Lech Stolecki, KGHM CUPRUM Sp. z.o.o. – Research and Development Centre, Poland
Dr. Jacek Sztubecki, Bydgoszcz University of Technology, Poland
Dr. İbrahim Tiryakioğlu, Afyon Kocatepe University, Turkey
Prof. Ihor Trevoho, Lviv Polytechnic National University, Ukraine
Dr. Agnieszka Trystula, University of Warmia and Mazury in Olsztyn, Poland
Dr. Tomasz Wojciechowski, MIlitary Univesrity of Technology, Poland
Dr. Ireneusz Wyczałek, Poznań University of Technology, Poland
Dr. Patrycja Wyszkowska, University of Warmia and Mazury in Olsztyn, Poland
Dr. Hanfa Xing, Shandong Normal University, China
Prof. Cemal Özer YİĞİT, Gebze Technical University, Turkey
Dr. Marek Hubert Zienkiewicz, Gdańsk University of Technology, Poland
Prof. Ryszard Źróbek, University of Warmia and Mazury in Olsztyn, Poland

Plagiarism Policy

Advances in Geodesy and Geoinformation journal uses iThenticate software to screen for plagiarism. Each manuscript submitted to the journal undergoes this procedure before it is send to the Reviewers. Authors submitting an original article should be certain that no paragraphs or data of others are presented as their own. If this is the case it will be considered 'plagiarism'. If material from other works is used, appropriate acknowledgements should be made to them. This applies to all material that is copied, summarized or paraphrased from any copyrighted material. Authors should also be certain that the work they submit is original and not a duplication of their previous work. If this is the case, it may be considered 'self-plagiarism'.

This page uses 'cookies'. Learn more