The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions.
All papers are peer-reviewed and published in English.
The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
Polish Polar Research is indexed in Science Citation Index Expanded, Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Cold Regions Bibliography, Antarctic Literature, Geological Abstracts, Polish Scientific Journals Contents - Agricultural and Biological Sciences, Quarterly Review, and Zoological Record.
FRAUD NOTICE
We have been made aware of certain fraudulent activities that have been claiming to represent Polish Polar Research. These activities include a fake, predatory website and unsolicited emails. The aim of the fraud is to trick suspected authors/researchers into believing they are communicating with a journal editor in order to obtain their personal information, scientific results and/or money. Polish Polar Research’s name, logo and other information have been used without permission to try to convey authenticity. If you have any concerns or see suspicious communications that reference Polish Polar Research, please report to Editors-in-Chief. Legitimate information regarding Polish Polar Research and its manuscripts can always be found on our website at http://journals.pan.pl/ppr/. We recommend that authors do not respond to any unsolicited offers of manuscript submissions nor enter any monetary agreement.
Polish Polar Research is an open-access journal in which archive issues are freely accessible and articles are published at no cost to authors.
Shallow−marine deposits of the Krabbedalen Formation (Kap Dalton Group) from Kap Brewster, central East Greenland, yielded rich dinoflagellate cyst and pollen− −spore assemblages. Previously, this formation yielded also rich mollusc and foraminifer age−diagnostic assemblages. A Lower Oligocene age of the Krabbedalen Formation seems to be supported by the dinoflagellate cyst assemblage analysis, while the pollen−spore as− semblages point to a wider stratigraphic age range within Oligocene–Middle Miocene.
Research on permafrost in the Abisko area of northern Sweden date from the 1950s. A mean annual air temperature of −3°C in the Abisko mountains (i.e. 1000 m a.s.l.) and −1°C beyond the mountain area at an altitude of around 400m suggests that both moun− tain and arctic permafrost occur there. Several geophysical surveys were performed by means of resistivity tomography (ERT) and electromagnetic mapping (EM). Wherever pos− sible the geophysical survey results were calibrated by digging tests pits. The results show that permafrost occurs extensively in the mountain areas, especially those above 900m a.s.l. and also sporadically at lower altitudes. At 400 m a.s.l. permafrost may be up to 30 m thick. Its thickness and extent are determined largely by the very variable local rock and soil con− ditions. Fossil permafrost is also likely to occur in this area.
The present contribution to lichen−forming and lichenicolous biota of northern− most Billefjörden (Petuniabukta area, central Spitsbergen, Svalbard) contains 40 species of lichens. Four species: Arthonia ligniariella, Candelariella lutella, Ochrolechia upsaliensis, Polyblastia pernigrata are new for the Svalbard Archipelago.
The Panorama Point Beds represent a subfacies of the Early to Middle Permian Radok Conglomerate, which is the oldest known sedimentary unit in the Prince Charles Mountains, MacRobertson Land, East Antarctica. This unit records clastic sedimentation in fresh−water depositional system during the early stages of development of the Lambert Graben, a major structural valley surrounded by crystalline highlands in the southern part of Gondwana. It contains common siderite precipitated through early diagenetic processes in the swamp, stagnant water, and stream−flow environments. There are two types of siderite in the Panorama Point Beds: (1) disseminated cement that occurs throughout the sedimentary suc− cession; and (2) concretions that occur at recurrent horizons in fine−grained sediments. The cement is composed of Fe−depleted siderite (less than 90mol%FeCO3)with an elevated con− tent of magnesium, and trace and rare earth elements. It has negative 13CVPDB values (−4.5 to −1.5‰). The concretions are dominated by Fe−rich siderite (more than 90mol% FeCO3),with positive 13CVPDB values (+1 to +8‰). There are no noticeable differences in the oxygen (18OVPDB between −20 and −15‰) and strontium (87Sr/86Sr between 0.7271 and 0.7281) iso− topic compositions between the siderite types. The cement and concretions developed in the nearsurface to subsurface environment dominated by suboxic and anoxic methanic degrada− tion of organic matter, respectively. The common presence of siderite in the Panorama Point Beds suggests that fresh−water environments of the Lambert Graben were covered by vegetation, starting from the early history of its development in the Early Permian.
During laboratory and field experiments on Nacella concinna on the west coast of Admiralty Bay, King George Island (Antarctica) clear morphological and behavioural differences between two limpet forms (N. concinna polaris and N. concinna concinna) were found. They suggested presence of genetic divergence. AFLP (amplified fragment length polymorphism) profiling of N. concinna individuals representing the two forms revealed nearly 32% of polymorphic bands; only 2% of them differed between the forms. Our results suggest that the observed phenotypic variation seems to be a result of adaptation to environ− mental conditions and not of any genetic divergence.
Editors-in-Chief
Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail:
magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail:
wmaj@twarda.pan.pl
Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland
e-mail:
michal.luszczuk@poczta.umcs.lublin.pl
Associate Editors
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Krzysztof JAŻDŻEWSKI (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl
Monika KĘDRA (Sopot)
e-mail: kedra@iopan.gda.pl
Ewa ŁUPIKASZA (Sosnowiec)
e-mail: ewa.lupikasza@us.edu.pl
Piotr PABIS (Łódź),
e-mail: cataclysta@wp.pl
Editorial Advisory Board
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Andrzej GAŹDZICKI (Warszawa)
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków)
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot) - President.
Geosciences
Wojciech
MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone:
(48 22) 697 88 53
Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818
Warszawa, POLAND
Life Sciences
Magdalena
BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone:
(48 22) 635 42 97
Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul.
S. Banacha 12/16
90-237 Łódź, POLAND