The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions.
All papers are peer-reviewed and published in English.
The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
Polish Polar Research is indexed in Science Citation Index Expanded, Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Cold Regions Bibliography, Antarctic Literature, Geological Abstracts, Polish Scientific Journals Contents - Agricultural and Biological Sciences, Quarterly Review, and Zoological Record.
FRAUD NOTICE
We have been made aware of certain fraudulent activities that have been claiming to represent Polish Polar Research. These activities include a fake, predatory website and unsolicited emails. The aim of the fraud is to trick suspected authors/researchers into believing they are communicating with a journal editor in order to obtain their personal information, scientific results and/or money. Polish Polar Research’s name, logo and other information have been used without permission to try to convey authenticity. If you have any concerns or see suspicious communications that reference Polish Polar Research, please report to Editors-in-Chief. Legitimate information regarding Polish Polar Research and its manuscripts can always be found on our website at http://journals.pan.pl/ppr/. We recommend that authors do not respond to any unsolicited offers of manuscript submissions nor enter any monetary agreement.
Polish Polar Research is an open-access journal in which archive issues are freely accessible and articles are published at no cost to authors.
The area of NW Wedel Jarlsberg Land south of Bellsund (Spitsbergen), between Dunderbukta in the west and the Berzeliustinden mountain group in the east, consists of five fault-bounded blocks: (1) the Renardbreen Block (Middle–Late Proterozoic basement rocks), (2) the Chamberlindalen Block (Late Proterozoic basement rocks), (3) the Martinfjella Block (Late Proterozoic through Early Ordovician basement rocks), (4) the Berzeliustinden Block (Late Proterozoic and Early Ordovician basement rocks covered by Late Palaeozoic–Tertiary platform deposits), (5) the Reinodden Block (Late Palaeozoic and Mesozoic rocks). The paper presents an outline of lithostratigraphy (Middle/Upper Proterozoic–Lower Ordovician: Hecla Hoek Succession) and architecture of the Caledonian basement in which several thrust-sheets and thrust-folds have been recognized. It also discusses some aspects of Tertiary overthrusting, faulting and rotation with affected the basement rocks and remodelled its Caledonian architecture.
Diagenetic carbonate deposits (concretions, cementation bodies and cementstone bands) commonly occur in organic carbon-rich sequence of the Agardhfjellet Formation (Upper Jurassic) in Spitsbergen . They are dominated by dolomite/ankerite and siderite. These deposits originated as a result of displacive cementation of host sediment in a range of post-depositional environments, from shallow subsurface to deep-burial ones. Preliminary results of the carbon and oxygen isotopic survey of these deposits in southern Spitsbergen (Lĺgkollane, Ingebrigtsenbukta, Reinodden, and Lidfjellet sections) show the δ13C values ranging between –13.0‰ and –1.8‰ VPDB, and the δ18O values between –16.0‰ and –7.7‰ VPDB. These results suggest that the major stage of formation of the carbonate deposits occurred during burial diagenesis under increased temperature, most probably in late diagenetic to early catagenic environments. Carbonate carbon for mineral precipitation was derived from dissolution of skeletal carbonate and from thermal decomposition of organic matter.
The occurrence of coreless winters in the South Shetland Islands region is related to increase in the intensity of cyclonic circulation and to the presence of massive and rapid advection of warm air northerly and westerly. Coreless winter developments depend on large-scale oceanic processes – the presence of positive anomalies in sea surface temperature (SST) in the Bellingshausen Sea over the range 080°–092°W and the retreat of sea ice extent southwards. When negative anomalies of SST in the same region are observed and the sea ice extent advances northwards, a winter with clearly marked cold core is experienced at the Arctowski Station on the South Shetlands.
Ninety eight polychaete species were found in the shallow sublittoral of Admiralty Bay. The most abundant were Leitoscoloplos kerguelensis, Tauberia gracilis, Ophelina syringopyge, Rhodine intermedia, Tharyx cincinnatus, Aricidea (Acesta) strelzovi, Apistobranchus sp., Cirrophorus brevicirratus and Microspio moorei. Mean abundance of polychaetes was estimated at 120 ind./ 0.1m2. As a result of cluster analysis several polychaete assemblages were distinguished. The highly specific assemblage with two characteristic species, Scoloplos marginatus and Travisia kerguelensis, from shallow areas with sandy bottom situated far from glaciers; a distincly specific assemblage with Apistobranchus sp. from poorly sorted sediments in the bottom areas situated on the slopes at the base of steep rubble shores; the richest and most diverse, highly specific polychaete assemblage from the central basin of the bay with Tauberia gracilis as the most characteristic species, as well as two assemblages from the bottom areas neighbouring glaciers and influenced by the intensive enrichment of very small grain-sized sediments with Ophelina cylindricaudata and Tharyx cincinnatus. Clear assemblages’ arrangement was observed along the gradient: sand, silty sand, silt towards clay silt. Other important factors, supporting the proposed classification of assemblages and their character, include the sorting coefficient of the sediment (So) as well as the slope of the bottom. The between-habitat diversity of polychaete fauna is strongly connected with the phenomena occurring in the neighbouring terrestrial coastal areas.
Editors-in-Chief
Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail:
magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail:
wmaj@twarda.pan.pl
Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland
e-mail:
michal.luszczuk@poczta.umcs.lublin.pl
Associate Editors
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Krzysztof JAŻDŻEWSKI (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl
Monika KĘDRA (Sopot)
e-mail: kedra@iopan.gda.pl
Ewa ŁUPIKASZA (Sosnowiec)
e-mail: ewa.lupikasza@us.edu.pl
Piotr PABIS (Łódź),
e-mail: cataclysta@wp.pl
Editorial Advisory Board
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Andrzej GAŹDZICKI (Warszawa)
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków)
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot) - President.
Geosciences
Wojciech
MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone:
(48 22) 697 88 53
Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818
Warszawa, POLAND
Life Sciences
Magdalena
BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone:
(48 22) 635 42 97
Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul.
S. Banacha 12/16
90-237 Łódź, POLAND