Nauki Ścisłe i Nauki o Ziemi

Polish Polar Research

Zawartość

Polish Polar Research | 2019 | vol. 40 | No 4 |

Abstrakt

The purpose of the study was to estimate in 2012 range and degree of soil contamination due to local diesel fuel leakage spills that occurred in 1980 and from any subsequent activities in the vicinity of the scientific Polish Polar Station in Hornsund, Svalbard. The area of the study covered the immediate vicinity of station buildings including areas of the 1980’s fuel barrel storage depot and location of current fuel tanks. Results of the study were compared with a similar study performed in 1980. As of 2012, areas potentially contaminated covered 0.9 ha, which was a 50% decrease compared to 1980. The area contaminated with total petroleum hydrocarbons was extremely localized. Spread of petroleum hydrocarbons from 1980’s source of pollution investigated 32 years later showed that petroleum derived products were environmentally mobile. Concentrations of total petroleum hydrocarbons in surface soils of the unsaturated active layer above the permafrost decreased significantly mostly due to surface runoff and dispersion through ephemeral drainages. Concentrations of total petroleum hydrocarbons increased with depth through time in sandy soils on the flat area where the largest 1980’s fuel barrel depot was located.

Przejdź do artykułu

Autorzy i Afiliacje

Anna J. Krzyszowska Waitkus
Brian Waitkus

Abstrakt

Snowmelt is a very important component of freshwater resources in the polar environment. Seasonal fluctuations in the water supply to glacial drainage systems influence glacier dynamics and indirectly affect water circulation and stratification in fjords. Here, we present spatial distribution of the meltwater production from the snow cover on Hansbreen in southern Spitsbergen. We estimated the volume of freshwater coming from snow deposited over this glacier. As a case study, we used 2014 being one of the warmest season in the 21st century. The depth of snow cover was measured using a high frequency Ground Penetrating Radar close to the maximum stage of accumulation. Simultaneously, a series of studies were conducted to analyse the structure of the snowpack and its physical properties in three snow pits in different glacier elevation zones. These data were combined to construct a snow density model for the entire glacier, which together with snow depth distribution represents essential parameters to estimate glacier winter mass balance. A temperature index model was used to calculate snow ablation, applying an average temperature lapse rate and surface elevation changes. Applying variable with altitude degree day factor, we estimated an average daily rate of ablation between 0.023 m d-1 °C-1 (for the ablation zone) and 0.027 m d-1 °C-1 (in accumulation zone). This melting rate was further validated by direct ablation data at reference sites on the glacier. An average daily water production by snowmelt in 2014 ablation season was 0.0065 m w.e. (water equivalent) and 41.52·106 m3 of freshwater in total. This ablation concerned 85.5% of the total water accumulated during winter in snow cover. Extreme daily melting exceeded 0.020 m w.e. in June and September 2014 with a maximum on 6th July 2014 (0.027 m w.e.). The snow cover has completely disappeared at the end of ablation season on 75.8% of the surface of Hansbreen.

Przejdź do artykułu

Autorzy i Afiliacje

Aleksander Uszczyk
Mariusz Grabiec
Michał Laska
Michael Kuhn
Dariusz Ignatiuk

Abstrakt

The objective of the study was to determine multi-annual changes and variability of occurrence of cold spells in summer and warm spells in winter on Spitsbergen in the period 1976–2016, and circulation conditions of their occurrence. Cold days in summer were defined as days with mean daily air temperature lower than temperature corresponding to the 10th percentile from daily temperature, and warm days in winter as days with mean daily air temperature exceeding the 90th percentile from daily air temperature. The research showed a statistically significant increase in mean air temperature, the rate of which in winter was more than four times higher than in summer. The observed warming translated into a decrease in the number of cold days in summer (-2.5 days/10 years in Svalbard Lufthavn and -1.3 days/10 years in Ny-Ålesund) and an increase in the number of warm days in winter (2.7 days/10 years in Svalbard Lufthavn and 2.4 days/10 years in Ny-Ålesund), and warm and cold spells related to the frequency of such days. The rate of the changes was higher in Svalbard Lufthavn than in Ny-Ålesund. The occurrence of cold days and cold spells was particularly related to the advection of air masses from the north-western sector. The occurrence of warm days and warm spells was related to the advection of air masses from the south-west.

Przejdź do artykułu

Autorzy i Afiliacje

Arkadiusz M. Tomczyk
Ewa B. Łupikasza
Sebastian Kendzierski

Abstrakt

This paper presents a comparative study on the anatomy of the Antarctic hairgrass (Deschampsia antarctica É. Desv.) from natural populations of two distant maritime Antarctic regions: the Argentine Islands (Antarctic Peninsula region) and the Point Thomas oasis (King George Island, South Shetland Islands). Comparison of D. antarctica plants from natural populations of Argentine Islands region and plants originated from seeds of these populations cultivated in vitro also was made. Additionally anatomical features of Deschampsia antarctica were compared with ones for D. caespitosa. The results of our study do not provide enough evidence to assert more pronounced xerophytic anatomical features in D. antarctica plants from more harsh conditions of Argentine Islands region. Such features (both qualitative and quantitative) of D. antarctica mainly depend on local conditions, and not on the latitudinal or climatic gradient. In both regions it is possible to find individuals that represent different ecotypes which are adopted to open arid or more humid habitats. It has been shown that Antarctic hairgrass plants germinated from seeds and cultivated in vitro retain the qualitative anatomy features that are typical to plants from the initial natural populations. This is especially noticeable in the case of plants from Berthelot Island (BE1 study plots), which might indicate a genetic fixation and a manifested differentiation similar to DNA haplotypes or chromosomal forms. However, quantitative characteristics, in particular the epidermis parameters, are subject to changes due to the transfer to more favourable conditions. Also qualitative and quantitative difference of D. antarctica in contrast with D. caespitosa have been described. These differences could be useful for identifying these two species. Additionally the quantitative differences (such as the area of the epidermal cells and the number and size of stomata on the adaxial surface) of Alaskan D. caespitosa grown from seeds were detected in contrast to the naturally grown plants of the same species from Ushuaia.

Przejdź do artykułu

Autorzy i Afiliacje

Nataliia Nuzhyna
Ivan Parnikoza
Oksana Poronnik
Iryna Kozeretska
Viktor Kunakh

Redakcja

Editors-in-Chief

Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail: magdalena.blazewicz@biol.uni.lodz.pl


Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail: wmaj@twarda.pan.pl


Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland
e-mail: michal.luszczuk@poczta.umcs.lublin.pl

Associate Editors

Piotr JADWISZCZAK (Białystok),

e-mail: piotrj@uwb.edu.pl

Krzysztof JAŻDŻEWSKI (Łódź),

e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl

Monika KĘDRA (Sopot)

e-mail: kedra@iopan.gda.pl

Ewa ŁUPIKASZA (Sosnowiec)

e-mail: ewa.lupikasza@us.edu.pl

Piotr PABIS (Łódź),

e-mail: cataclysta@wp.pl


Editorial Advisory Board


Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.

 

Kontakt

Geosciences
Wojciech MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone: (48 22) 697 88 53

Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818 Warszawa, POLAND


Life Sciences
Magdalena BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND


Social Science and Hummanities
Michał ŁUSZCZUK
phone: (48 81) 537 68 99

Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej UMCS
Al. Kraśnicka 2D
20-718 Lublin, POLAND

Instrukcje dla autorów

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.

A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.

Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa.
Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

Examples:
ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffioyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).
WARD B.L. 1984. Distribution of modern benthic foraminifera of McMurdo Sound, Antarctica. M.Sc. Thesis. Victoria University, Wellington (unpublished).

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.

Polityka Open Access

Polish Polar Research jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0. https://creativecommons.org/licenses/by-nc-nd/3.0/

Polish Polar Research is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0 https://creativecommons.org/licenses/by-nc-nd/3.0/.

Dodatkowe informacje

Abstracting & Indexing

Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • CNPIEC
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji